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Abstract

The prediction of future locations can be useful in various settings, one being the au-
thentication process of a person. In this thesis, we perform the prediction of next places
with the help of a HMM. We focus on models with a discrete state space and thus need
to discretise the data. This is done by pre-processing the raw, continuous location data
in two steps. The first step is the extraction of stay-points, i.e. regions in which a per-
son spends a given time period at. In the second step, multiple stay-points are grouped
with the clustering algorithm DBSCAN to form significant places. After pre-processing,
we train a HMM with a state and observation space that correspond to the extracted
significant places. Based on the previously observed location, our model predicts the
next place for a person. In order to find good models for next place prediction, we
did experiments with two datasets. The first one is the Geolife GPS trajectory dataset
from Microsoft, which consists of GPS traces. The second dataset was self-collected and
contains additional data obtained from WiFi and cell towers. Our final model achieves a
validation accuracy higher than 0.95 on both datasets. However, a prediction accuracy
reaching from 0.8 to 0.99 of a model that solely predicts noise as its future location,
leads us to the conclusion that the datasets, as well as the pre-processing step need
further refinements for our HMM to encapsulate more valuable information.
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Zusammenfassung

Die Vorhersage von zukünftigen Aufenthaltsorten eines Menschen ist in vielen An-
wendungen hilfreich. Einer davon ist der Authentifizierungsprozess von Menschen. In
dieser Thesis wird der wahrscheinlichste zukünftige Standort mithilfe eines HMM vor-
hergesagt. Um kontinuierliche Positionsdaten zu diskretisieren, und sie dadurch auf
eine Verarbeitung durch ein Modell welches einen diskreten Zustandsraum aufweist
vorzubereiten, führen wir zuerst eine Vorverarbeitung in zwei Schritten durch. Der
erste Schritt ist das Eruieren von so genannten stay-points, die Regionen, in welchen
Personen eine längere Zeit verweilen, darstellen. Im zweiten Schritt werden mithilfe
des Cluster-Algorithmus DBSCAN mehrere dieser Punkte gruppiert, um bedeutungs-
volle Standorte zu formen. Nach dem Durchführen der Vorverarbeitung wird ein HMM
trainiert. Der Zustands- sowie Beobachtungsraum dieses Modells entspricht den zuvor
bestimmten bedeutungsvollen Standorten. Basierend auf einem vergangenen Standort,
sagt unser Modell die nächste, meist wahrscheinliche Position einer Person vorher. Um
die Genauigkeit dieser Vorhersage zu testen, wurden Experimente mit zwei verschiedenen
Datensätzen durchgeführt. Das Geolife GPS trajectory dataset von Microsoft besteht
ausschließlich aus GPS Folgen. Unser eigener Datensatz beinhaltet zusätzlich Daten,
welche mithilfe von WiFi und Mobilfunkmasten gesammelt werden können. Das da-
raus resultierende endgültige Modell erreicht eine Validierungsgenauigkeit von über 0.95
für beide Datensätze. Ein Modell, dass nur noise als nächsten Standort vorhersagt
und damit eine Genauigkeit von ungefähr 0.8 bis zu 0.99 erzielt, lässt uns jedoch
darauf schließen, dass beiderlei Datensätze sowie der Vorverarbeitungsprozess weitere
Verbesserungen benötigen, damit unser HMM hochwertigere Informationen darstellen
kann.
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1 Introduction

The increasing prevalence of smart phones and other Global Positioning System (GPS)-
enabled devices have brought various new possibilities to the task of location data ac-
quisition [31]. Knowing where a person is located at a certain point in time can be
considered highly sensitive information, however, as a series of locations could be used
to infer their identity (cf. [13]). Nevertheless, finding these traces - or tracking - allows,
among others, improved content for context-aware applications [12] or location-aware
recommender systems [4].

Location history has not only been used for the purpose of providing a better user
experience so far. Due to their sensitive nature, location traces are suited for determining
the geographic position of a person up to a certain precision. This degree of confidence
in a current or future location can in turn assist in tasks such as authentication, cf. [19].

In this thesis we want to look at the usage of location history from a similar, security
related angle. A model that attempts to predict human trajectories based on their often
high degree of spatial and temporal regularity is learned [25]. The model, describing the
series of locations a user visits regularly, is used to predict the next geographic position
of that person. If we obtain a second location directly from the environment, originating
from sensors such as mobile phones, our prediction can in turn be compared to this
location in question. Later on, the distance between these two locations can be used as
a base to compute a level of confidence, denoting our belief in the person actually being
at the location in question. This could then serve as a base for authentication decisions.

When working in an indoor environment, computing the location of a user can be
complicated by poor satellite signals [35]. These cases require alternatives to the usage
of GPS data. Technologies often used for this are WiFi, Bluetooth or infrared ray [35].
Also ultrasound sensors and vision systems have been applied to track human locations
[12] before, as well as Call Detail Records (CDRs) and data traffic of mobile networks
[25]. The work in this thesis will, however, mainly focus on GPS data as its input.

1.1 Motivation

Despite the sensitive nature of the data, plenty different factors motivate the application
of location trajectories for next place prediction. Often, these originate in the desire
of improving user experience. Using human trajectories to predict locations can, for
example, allow service providers location-based advertising, early warning systems or
traffic planning [25], as well as efficient network resource management schemes [1].

1



1 Introduction

Dedicating a separate section specifically to the topic, Bobadilla et al. state that also a
number of recommender systems incorporates location data [4]. This way, recommend-
ations can be given with respect to a current, estimated location of a user.
Computing user similarities based on location histories can also be used to improve

the user experience. In general, the similarity of users can be used to find e.g. potential
friends on one hand or improve marketing strategies with reasonable recommendations
on the other [16].
A second factor motivating the usage of location trajectories focuses on security, more

specifically on authentication. Extracting significant location and recognising daily
activity patterns with the help of human trace histories can support continuous au-
thentication of users [19]. Also Fridman et al. use location data as an additional source
to verify an identity [9].

1.2 Outline

The rest of this thesis is organised as follows. Chapter 2 contains a theoretical back-
ground and foundation of the work presented later on, followed by current developments
in the field in chapter 3. Thereafter, chapter 4 introduces a theoretical view of the model
we used to approach the issue of location tracking, followed by a closer description of
the according implementation. Experiments and their results are presented in chapter
5, before chapter 6 contains a summary of our conclusions.
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2 Background

2.1 The Spherical Coordinate System

Spherical coordinates are a common tool for describing the geographic location of a
person. The 3D-coordinates are defined as the triplet radius r, longitude φ and polar
distance or latitude θ [24]. Figure 2.1 visualises the three factors describing a point P
on a sphere. Radius r denotes the length of radius vector ~OP , i.e. the distance of point
P to the origin O. The longitude φ describes the angle measured from reference vector
x to an orthogonal projection of ~OP to the reference plane, and latitude θ is defined as
the angle between the upwards direction and vector ~OP .

y

z

x

φ

θ

r

P (x, y, z)

O

Figure 2.1: Point P in spherical coordinates

The elements x, y and z depicted in Figure 2.1 denote the Cartesian coordinates of
M . Given the triplet (x, y, z), according spherical coordinates can be obtained by [24]

r =
√
x2 + y2 + z2

φ = arctan
y

x
(2.1)

θ = arccos
z

r
.
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2 Background

Oppositely, Cartesian coordinates can also be expressed by means of (r, φ, θ) [24], i.e.

x = r sin θ cosφ

y = r sin θ sinφ (2.2)
z = r cos θ.

As any number of added or subtracted full turns to an angular measure do not change
the angle and therefore the point itself, any point can be described in infinitely many
ways using spherical coordinates. In order to ensure uniqueness, angles φ and θ are
therefore often restricted [24]. Polyanin and Manzhirov suggest to assume 0 < φ ≤ 2π
and 0 ≤ θ ≤ π, or −π < φ ≤ π and 0 ≤ θ ≤ π.

2.1.1 The Global Positioning System

The Global Positioning System is a way to obtain geographic coordinates of a location
on the earth. For this, satellites broadcast radio signals at the speed of light containing
their location, status and precise time [22]. GPS devices on the other hand receive
satellite signals, and compute the respective distance between them based on the time
of arrival. The location on earth in all its three dimensions can be computed as soon as
a device knows the distance to at least four satellites.

2.1.2 Processing Geographic Coordinates

Most machine learning algorithms are not able to find interesting information in a raw
signal. Therefore, a common step that comes before learning consists of finding useful
features that represent the information necessary for the algorithm to find patterns.
Whenever we want to apply machine learning algorithms to raw geographic coordinates,
i.e. longitudes and latitudes, a common pre-processing routine is to find places that are
significant to a user. Before these significant places can be found with methods such as
clustering, the raw locations are typically grouped into stay-points [16].
A stay-point describes a geographic area a user stayed in for a certain amount of time

[16]. It is often defined by a radius to define the size of the area, as well as a time span
defining the minimal time frame that has to be spent there. If a sequence of locations is
within the radius and spans the minimal time span, we call it a stay-point. In addition
to a mean coordinate, the time of entering and leaving the assigned region of a stay-point
is frequently used as a characterisation thereof.
As an example, we can think of a shopping mall representing a possible significant

location [30]. Different shops within this shopping mall would be denoted by stay-points.
In other words, a significant location consists of multiple stay-points, or, multiple stay-
points need to be clustered in order to make up one significant location. A visual ex-
planation of the connection between initial location data, stay-points and two exemplary,
final significant places is given in Figure 2.2.

4



2.2 Clustering

Figure 2.2: Relation of GPS trajectories, stay-points and significant places

2.2 Clustering

Putting different objects in groups that are similar to each other is a way of finding and
expressing regularities in data [18]. Within the field of unsupervised machine learning,
this grouping or segmentation of data is often called clustering. The predictive powers
of good clustering often motivate the usage of this technique. For us, however, the lossy
compression that can be achieved via clustering will aid in pre-processing and discretising
the locational input data.

More precisely, with clustering we try to group data so that observations within a
cluster are related more closely to each other than to objects from different clusters [11].
To achieve this, a variety of distance or dissimilarity measures can be used. Apart from
the distance measure, different types of clustering are differentiated by other factors like
e.g. assumptions about underlying probability models of data.

2.2.1 Combinatorial Clustering

Clustering algorithms that do not make use of probabilistic models to describe the data
are called combinatorial [11]. This prominent set of algorithms assigns each object or
observation to one of a predefined number of clusters, typically labelled by an integer
k ∈ {1, . . . , K}.
The most popular representative of combinatorial algorithms is K-means [11]. This

algorithm assigns every element to the cluster with the closest centre iteratively. Based
on this assignment, new cluster-centres are computed until the assignments do not fur-
ther change. K-means employs squared Euclidean distance as dissimilarity measure, and
often initialises cluster-centres randomly. How clusters and their according centres can
change in the course of iterations is illustrated in Figure 2.3.

Various algorithms which are strongly related to the base k-means clustering approach

5
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Figure 2.3: Changes during iterative k-means clustering

exist. Popular examples of such extensions are K-medoids and CLARA [29].

2.2.2 Distribution-Based Clustering

In contrast to the previous set of clustering algorithms, distribution-based clustering
relies on an assumption on the distribution underlying the data [29]. Typical algorithms
of this category are DBCLASD as well as Mixture Models.
Mixture models assume that observations are independently sampled from probab-

ility density functions that are a composition of different, well-understood component
distributions [11]. The goal of the algorithm is to find parametrisations for these simple
distributions, so that the distribution of the available data matches that of the com-
position or mixture as well as possible. The clustering then follows from finding the
component to which each point most likely belongs. A prominent mixture model that
can be used for clustering is the GMM.

2.2.3 Hierarchical Clustering

Given a specific dissimilarity measure, Hierarchical Clustering looks at data segmenta-
tion on different levels [11]. Every cluster in the lowest level has exactly one observation
as its element, while at the highest level a single cluster contains the entire data. Clusters
at arbitrary hierarchical levels can be obtained by merging clusters at the next lower
level (agglomerative paradigm) or by splitting clusters at the next higher level (divisive
paradigm). Independent of the used paradigm, every level in the hierarchy corresponds
to a possible clustering result.
Hierarchical clustering allows the usage of various linkages, which describe the way

dissimilarities between different clusters are computed [11]. Figure 2.4 illustrates that
the application of different linkages can indeed lead to divergent results. The depicted
dendrograms visualise how data is partitioned by hierarchical clustering algorithms. By
cutting a dendrogram horizontally, branches fall apart and form the expected clusters.
Agglomerative hierarchical clustering has been studied extensively in literature, and

exhibits wide-ranging applicability [11]. The divisive paradigm on the other hand is

6
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Figure 2.4: Hierarchical clustering results based on different linkage methods provided
by the Python library scikit learn [23]

often preferred when looking for a small number of clusters. To perform this kind of
hierarchical clustering, one can use combinatorial clustering methods such as K-means
with K = 2 to split clusters iteratively.

2.2.4 Density-Based Clustering

In a lot of applications, domain knowledge necessary for choosing the predefined number
of clusters is not available [7]. Approaches using density-based clustering try to bypass
this issue by taking into account that the density within a cluster tends to be a lot
higher than outside of a cluster. A prominent representative of this kind of algorithms
is DBSCAN.
The key idea of DBSCAN is to extract clusters of observations, which contain at least

a minimum number of points within a specific radius [7]. In other words, the density of
a neighbourhood has to be higher as a defined threshold. For this purpose, DBSCAN
supports the usage of various distance functions, which simultaneously control the shape
of a neighbourhood. Two parameters regulate previously stated radius and minimum
number of points. The former one is often denoted as epsilon or ε.
Further examples of this kind of clustering are DJ-Cluster, a density- and join-based

algorithm which especially tackles potential memory issues of DBSCAN [34], and OP-
TICS, overcoming the sensitivity of DBSCAN to its two parameters [29].

2.2.5 Further Developments in Cluster Analysis

Prior approaches were only an excerpt of all possibilities that allow the clustering of data.
There exist a lot of algorithms tackling the issue from entirely different angles, some of
which have been developed more recently. Examples include Affinity Propagation, which
was proposed in 2007 and performs clustering via message passing between data points
[8].
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Kernel-based clustering methods map input data via a non-linear kernel functions to
a higher dimensional feature space, in which original clustering algorithms are applied
[29]. Clustering based on density and distance was proposed in 2014. These kind of
algorithms choose cluster centres which exhibit a high local density and a high distance
to other potential cluster centre points simultaneously. After the selection of centre
points, the remaining data is grouped based on the nearest cluster. Other clustering
algorithms can be found in [29].

2.2.6 Hard vs. Soft Clustering

The majority of clustering algorithms discussed thus far, e.g. the prominent K-means
algorithm, assign data-points deterministically to clusters [11]. In literature, this is often
being referred to as hard clustering. This can also be done in a probabilistic fashion,
however, such that every data-point belongs to a cluster with a certain probability,
making it a soft assignment.
Figure 2.5 illustrates the connection of hard and soft clustering based on the close

relation of the K-means algorithm and the process of finding GMM parameters [11].
The left hand side shows two images, each with two Gaussian densities g0(x) and g1(x).
The standard deviation σ differs from top to bottom images; while the upper Gaussian
densities are generated with σ = 1.0, the lower plots feature densities with σ = 0.1.
The images on the right hand side of Figure 2.5 illustrate the relative densities or re-

sponsibilities, which represent a soft cluster assignment [11]. Responsibilities can be close
to 0.5 whenever the standard deviation is relatively large. Oppositely, if the standard
deviation, σ, converges to zero, the responsibilities approach 1.0 for the closest cluster,
and 0.0 for the other. For example, the highlighted data-point x in the upper image is
assigned 0.73 by g0(x) and 0.27 by g1(x). In the lower image, on the other hand, g0(x)
and g1(x) assign 1.0 and 0.0 to x respectively. This means that x is assigned to former
cluster with a probability of 1.0.
When the probabilities assigned to a data-point become 0.0 and 1.0, as illustrated in

the lower part of Figure 2.5, we reach a hard assignment, causing K-means and GMMs
coincide.

2.3 Hidden Markov Models

2.3.1 Notation

The subsequent notation largely follows the work of Koller and Friedman [15]. Capital
letters, e.g. X, denote random variables. V al(X) is the corresponding domain of a
random variable X. Bold, italic capital letters represent sets of random variables, e.g.
X = {X1, X2, . . . }. The set of all random variables a model is defined over, is denoted
by X .
In a dynamic setting, we use superscripts to incorporate time. Concretely, X(t) denotes

the random variable representing a value of X at time t. As X, without superscript t,
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Figure 2.5: Left-hand side: Two illustrations of two Gaussian densities with σ = 1.0
and σ = 0.1, with various data-points to be clustered at the bottom of the

images.
Right-hand side: Relative densities or responsibilities, used to make a soft

assignment to said data-points.

does not take a single value in this case, but rather has a value for every time-step t, it
is no longer a random variable. Instead, X denotes a template variable when we operate
in a dynamic setting. The domain V al(X) once more describes all values a template
variable X can take at time t.

Furthermore, P (X) is a probability distribution, and P (X = x) is a probability. To
abbreviate this kind of notation, we will write P (x) instead of P (X = x) or P (x, y) as
a shorthand variant for P (X = x, Y = y). P (X, Y ) denotes the probability distribu-
tion over the discrete variables X and Y . P (X | Y ) will be used for the conditional
distribution of X given Y .

Subsequent sections also contain matrices described by bold capital letters, e.g. A,
and vectors represented by a bold, lower-case letter such as π. For the definition of used
terms and further information about the basics of probability theory, we refer to [15].
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2.3.2 Probabilities

Another term established in probability theory is the notion of events. An event denotes
the assignment of values to some or all random variables describing an environment [15].
These values originate from the domains of respective random variables. Atomic events
assign a value to each random variable in X , therefore corresponding to a specific state
the environment can be in.
Given a set S of atomic events, we have that a probability distribution P is a function

P : S 7→ R, satisfying the following constraints [15]:

1. P (α) ≥ 0 for all α ∈ S

2. P (Ω) = 1 where Ω =
⋃
α∈S α, and finally

3. if α, β ∈ S and α ∩ β = ∅, then P (α ∪ β) = P (α) + P (β)

A probability distribution P assigns some value P (α) between zero and one to a
specific event α. This value is called the probability of the event. P (α) = 1 suggests
that we are certain that the event α will occur. P (α) = 0, on the other hand, indicates
certainty that the event will not occur.
There exist two main philosophical stances on the interpretation of these probability

values [15]. On one side, there is the frequentist interpretation, where probabilities
indicate frequencies of events. Concretely, a probability is viewed as the relative count
of event occurrences after infinitely many experiments. In the subjectivist or Bayesian
setting, on the other side, probabilities resemble a subjective degree of belief for an event
to occur.

2.3.3 Bayesian Models

A Bayesian Network (BN) is a graphical model based on the concepts of probability
theory [15]. It allows a compact representation of a system, by taking advantage of
conditional independences between variables describing its environment.
The core of a BN, network structure G, is a directed acyclic graph where each node

corresponds to one of the random variables in X [15]. This acyclic graph is structured
so that it models local independencies of the random variables. This gives rise to an
encoding of local independences

I(G) = {(X ⊥ NonDesc(X) | Pa(X)} ∀X ∈ X . (2.3)

Here, NonDesc(X) denotes non-descendent nodes of X in G, and Pa(X) represents all
parents of X. More intuitively, Equation 2.3 conveys that every node in G is independent
of its non-descendants, given its parents.

Figure 2.6 depicts a directed, acyclic graph with multiple nodes. If we try to find local
independences for node X, we first need to determine parents Pa(X) = {P1, P2} and
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P1 P2

X Y

D1 D2 N

Figure 2.6: Graph G with node X, its parents P1 and P2, descendents D1 and D2, and
non-descendent nodes Y and N

non-descendents NonDesc(X) = {Y,N}. Equation 2.3 then tells us, that for this graph
(X ⊥ Y,N | P1, P2).
The BN does not only model the independencies of X , but it also represents the full

joint distribution. To retrieve this joint distribution over X from the model, we can
make use of the chain rule for Bayesian networks [15], i.e.

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | Pa(Xi)). (2.4)

The factors P (X | Pa(X)) are Conditional Probability Distributions (CPDs), and are
associated with individual random variables in G [15].

2.3.4 Temporal Models

Often, systems act in an environment that evolves over time, resulting in a dynamic,
as opposed to a static setting. A snapshot of relevant system attributes at time t, is
called the system state [15]. It is an assignment of values to template variables X , and
therefore corresponds to a probabilistic event.

In addition to previous notions, X(t1:t2) denotes the set {X(t) | t ∈ [t1, t2]} for X ⊆ X
[15]. The assignment of values to this set of variables, i.e. an event, will accordingly be
denoted as x(t1:t2).

Atomic events in the dynamic setting are now called trajectories, and are assignments
of values to all variables X (1:T ) for some duration T [15]. Temporal models therefore
represent a joint distribution over these trajectories. Because arbitrarily long trajectories
can result in a huge probability space, a lot of temporal Bayesian models work with
simplifying assumptions to assure feasibility.
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2.3.5 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are the basic temporal extension of Bayesian mod-
els. In order to compactly represent distributions over infinite trajectories, they are built
upon three simplifying assumptions [15].
The first simplification is to assume discrete time. This can be achieved by splitting

a continuous time-line into a set of time-steps regularly spaced with granularity ∆.
Secondly, a DBN is assumed to be time invariant or stationary. Dynamic systems are
stationary when P (X (t+1) | X (t)) = P (X (s+1) | X (s)) for any s and t, i.e. when system-
state transitions stay the same for every time-step. The assumption of stationarity allows
us to represent state transitions with a transition model P (X ′ | X ), so that

P (X (t+1) = ξ′ | X (t) = ξ) = P (X ′ = ξ′ | X = ξ), (2.5)

for any t ≥ 0. Assignments to all variables in X are here denoted by ξ.
The third and final simplification of DBNs is the Markov assumption, which is ex-

plained in the next subsection.

2.3.6 The Markov Property

Over all template variables X , a dynamic system satisfies the Markov assumption if [15]

(X (t+1) ⊥ X (0:t−1) | X (t)) ∀t ≥ 0, (2.6)

i.e. the future only depends on the present, and not on the past.
Using the chain rule in combination with all simplifying assumptions of a DBN, we

can express the joint distribution over trajectories in a dynamic setting compactly [15],

P (X (0:T )) = P (X (0))
T−1∏
t=0

P (X (t+1) | X (t)). (2.7)

In some situations, random variables at a time-step t, i.e. X (t), do not solely depend
on the variables of previous time-step t−1 [15]. Instead, they are influenced by variables
of multiple past time-steps, i.e. t−1, . . . , t−k. In these circumstances, dynamic systems
do not strictly satisfy the Markov assumption. These systems are often being referred
to as semi-Markov of order k, or shorter, kth order Markovian.

2.3.7 The Hidden Markov Model

A Hidden Markov Model (HMM) is a state-observation model and a special case of a
DBN [15]. Dynamic systems that can be modelled with a HMM, are described via a
hidden, or latent, state variable S(t). Factors that can be observed in the environment
of the system on the other hand, are expressed with a separate, visible observation
variable O(t). As opposed to the discrete domain of the state variable, the observation
variable can either be discrete or continuous [3]. In what follows, we will focus on HMMs
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with a discrete observation variable, as is common in engineering and machine learning
communities.

A HMM is characterised by the initial state probabilities P (S(0)), typically denoted
by vector π, a state transition model P (S ′ | S) encoded in matrix A, and matrix B
describes the observation model P (O | S) [26]. This compact matrix representation is
possible due to the discrete character of state and observation variables. In case latter
variable is continuous on the other hand, the observation model is often modelled via
continuous probability density functions, such as GMMs [3]. Figure 2.7 shows a HMM,
for which the first observation is obtained at time t = 1.

S(0)π S(1) S(2) S(3) . . .

O(1) O(2) O(3)

A A A A

B B B

Figure 2.7: Graphical representation of an unrolled HMM with its
parameters π,A and B

Probability measures A, B and π with the two factors N andM , denoting the number
of states and distinct observation symbols respectively, fully specify a HMM [26]. Sub-
sequently, the complete set of model parameters will be abbreviated with θ = (A,B,π).

Next to being able to model how observations were emitted by dynamic systems,
HMMs also allow us to directly generate observation sequences according to its para-
meters [26]. To make use of this generative function of the HMM, one can choose an
initial state according to distribution π. Thereafter, the state transition model can
be applied to obtain a state for the next time-step, followed by using the observation
model to retrieve the first observation of the sequence. Applying the state transition and
observation model alternately can then be repeated until a desired time-step is reached.

2.3.8 Common Inference Tasks

Three of the most common reasoning tasks related to HMMs are filtering, smoothing
and prediction [15]. Also the decoding problem is a frequent topic in literature, which is
why it will subsequently be covered as well.

Filtering is a common reasoning task that is also termed tracking [15]. When perform-
ing the task of filtering, one computes P (S(t+1) | o(1:t+1)) recursively with the forward
pass [15], [26],

f (1:t+1) = P (S(t+1) | o(1:t+1))

=
1

Z
× P (o(t+1) | S(t+1))

∑
s(t)

P (S(t+1) | s(t))f (1:t)
s . (2.8)
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When subscripting f with a particular state-assignment s, we refer to a probability as
opposed to the entire distribution, i.e. f (1:t)

s = P (s(t) | o(1:t)). Intuitively, the filtering
task is the computation of a distribution over all hidden states, given everything we
observed thus far. Z represents the factor that normalises this distribution.

Smoothing is the task to compute P (S(t) | o(1:T )) for t < T , which is done with the
forward-backward algorithm [26], i.e.

P (S(t) | o(1:T )) =
1

Z
× P (S(t) | o(1:t))P (o(t+1:T ) | S(t))

=
1

Z
× f (1:t) × b(t+1:T ). (2.9)

Here Z is again a normalisation factor, f (1:t) is is the previously introduced forward pass
with f (1:0) = π, and b(t+1:T ) denotes the backward pass

b(t+1:T ) = P (o(t+1:T ) | S(t))

=
∑
s(t+1)

P (s(t+1) | S(t))P (o(t+1) | s(t+1))b(t+2:T ), (2.10)

where b(T+1:T ) = 1. Note here, that a backward pass does not express a probability
distribution, as is indicated with the initialisation that does not sum to one.
Smoothing is related to the filtering task. When applying the forward-backward al-

gorithm to perform smoothing, we want to compute a distribution over all hidden states
for a point t laying in the past, given observations up to a later point T in time.

Prediction is a task which is, to some degree, an extension of the filtering task. We
can compute P (S(t+k) | o(1:t)) with t + k > t by initialising p(t+0) = f (1:t), and then
propagating forward [15]

p(t+k+1) = P (S(t+k+1) | o(1:t))

=
∑
s(t+k)

P (S(t+k+1) | s(t+k))p(t+k). (2.11)

Decoding computes the most likely trajectory of the system based on given evidence,
i.e. arg maxs(0:T ) P (s(0:T ) | o(1:T )) [15]. Viterbi addressed the problem of finding this
trajectory by using [27]

v(1:0) = π,

v
(1:t+1)
i = max

j
v
(1:t)
j P (s

(t+1)
i | s(t)j )P (o(t+1) | s(t+1)

i ), (2.12)

bp
(t+1)
i = arg max

j
v
(1:t)
j P (s

(t+1)
i | s(t)j ). (2.13)
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Here, si denotes the ith value in the domain of state variable S. In order to terminate,
one can then use the back-pointers bp(t) in order to trace the path back from the best
final state, i.e.

s(T )∗ = arg max
i

v
(T )
i . (2.14)

2.3.9 Learning HMM Parameters with Expectation-Maximisation

Often, the parameters θ = (A,B,π) characterising a HMM are not directly available.
If we want to create a model that describes real phenomena well, we need to estimate
and optimize these parameters [26]. In other words, for O = {o1,o2, . . .}, we want to
maximise P (O | θ), i.e. the probability that a sequence of observations was produced
by a HMM with parameters θ [27]. Here, O denotes a sequence of real observations. By
adapting θ so that we maximise P (O | θ), we simultaneously maximise the probability
of our model producing sequence O.
Estimating HMM parameters is often being referred to as training the model [27]. As

there is no optimal way to optimise parameters θ, θ is chosen so that P (O | θ) reaches a
local maximum [26]. This local optimum is usually found via expectation-maximisation
methods, in particular with the incremental Baum-Welch algorithm. Another option
would be to use gradient-based techniques. When applying Baum-Welch, one computes
expected values based on the current model, and takes these to re-estimate a set of new
parameters. This is done iteratively, until convergence.

2.3.10 Evaluating the Learning Performance

Learning HMM parameters can also be seen as choosing one particular model out of a set
of candidate HMMs [15]. This set of possible models is the hypothesis space. By learning
from real data D, we want to find a model, specified by its parameters, that perfectly
describes a distribution P ∗. P ∗ here is the true distribution the data is sampled from.
A lack of sufficient data often prevents us from finding the real, underlying distribution
P ∗ in practice, which is why we look for a model that approximates P ∗ best. To be able
to say what is a reasonable approximation, one has to choose a goal for learning, in the
form of some function that needs to be minimised.
In section 2.3.9, we tried to approximate the true distribution P ∗ with a distribution

P̃ associated with our model. More generally however, we can also view learning as
an optimisation problem. Given an objective function, we want to find the model with
the best score within our hypothesis space. The objective or loss function here provides
us with a numeric preference for different models, and would ideally be a function of
the true distribution P ∗. As P ∗ is not available in general, it is often estimated by the
empirical distribution P̂D. P̂D is based on the real data D, and approaches the real
distribution P ∗ as the number of samples in D grows. If we optimise the loss function
relative to the empirical distribution P̂D as opposed to the true distribution P ∗, therefore
minimising the expected loss or risk, we talk about empirical risk minimisation.
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Disregarding the true risk completely when minimising the empirical risk can result in
difficulties. The available dataset D is often too small to contain relevant samples of all
events in an environment, leading to a poor estimate of the true underlying distribution
P ∗. Nevertheless, after learning model parameters, we want to reason about new events
that were not necessarily part of the seen data D. If we train our model so that it
perfectly captures P̂D, we can minimise the empirical loss. However, reasoning about an
event unseen in the training data D can then result in poor estimates with respect to the
true underlying probability of the event. We therefore want a model that generalises,
such that it can also perform well on data unseen in the training dataset. Whenever
our model is trained so that it can explain training data D without it being able to
generalise for unseen data, it is said to overfit.
To determine e.g. whether or not our model overfits, various techniques of evaluating

the performance on unseen data exist. One possibility is applying holdout testing, where
only a part of the data, the training-set, is used for updating model parameters. The
unused part, also denoted as test-set, can then be used to test how well the learned
model performs on unseen data. By holding out this test data, we are able to get an
unbiased empirical estimate of the risk.
Choosing the size of training- and test-set for a performance evaluation often proves

difficult. Increasing the number of samples in the training-set results in a better trained
model, but in a less accurate estimate of the performance. On the other hand, increasing
the size of the test-set gives us better performance estimates, but decreases the quality
of our learned model. A small number of overall training samples in dataset D therefore
makes it even more difficult, to determine a fitting size of training- and test-set. An
approach that should help to overcome this issue, is k-fold cross validation.
Cross validation is an approach that uses all available data D for training and testing

our model. As we do not want to bias our performance measure by testing on samples
also used for training, training- and test-sets have to be kept disjoint. We can do so
by applying holdout testing multiple times, and average over resulting estimates. More
precisely, when applying k-fold cross validation, we first split the data into k disjoint and
equally sized sets. In each iteration of this method we use one partition as test-set, and
all remaining partitions as training-set. The obtained estimates can then be combined.
If we set k = |D|, i.e. every sample corresponds to a separate partition, we talk about
leave-one-out cross validation.
Figure 2.8 shows possible partitions of holdout testing compared to 5-fold cross val-

idation. The images additionally show a third type of dataset. Test-sets Dtest as we
discussed so far are typically used to determine the performance of a final model. How-
ever, we might also want to compare the performance of different techniques. One way
to do this is to learn various models with the help of training-set Dtrain, and compare
the performance estimates obtained with Dtest. The problem with this approach is that
we tend to optimise the final model based on the test set. Therefore, the obtained per-
formance measures are too optimistic. To this end, we would need yet another set of
data that has not been used to make any decisions whatsoever. Therefore, the actual
test set is locked away until a final model is available and a part of the left-over training
data is again kept apart for comparing different techniques. This training-test data is
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(a) Holdout testing (b) 5-fold cross validation

Figure 2.8: Possible partitions of available data D. The darkest, purple, area
corresponds to the test-set, necessary for achieving an unbiased
performance estimate. The lighter, turquoise areas denote the

validation-sets, which can be used to determine the performance of
different parameters. The lightest, yellow, regions are training-sets used to

train the model.

often called the validation data.
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3.1 Extraction of Stay-Points and Significant
Locations

Yang et al. extract so-called stay-locations from cell phone records [31]. The temporal
order of records as well as small distances between them, determine stay-points. They are
characterised by a location, start-time, and expected, maximum and minimum duration.

Zhou et al. talk in their location tracking approach via Received Signal Strength (RSS)
about so-called location points [35]. A location point consists of similar RSS samples,
recorded with small RSS distance within a small time interval. Location points at which
a person stays for a long time are then referred to as personal common locations, denoting
e.g. restaurants or labs and therefore corresponding to our notion of significant places.

Instead of extracting stay-points as a first step, Mahbub and Chellappa perform clus-
tering on the raw location data [19]. DBSCAN based on geographical distances, is
applied to find clusters characterised by the latitude and longitude of the centre point,
as well as the radius in which all remaining points lie within. To capture data-points
that were obtained while the user was travelling or just at some insignificant place, two
types of dummy clusters were added.

Yang et al. propose a variant of the DBSCAN algorithm for an extraction of significant
places [30]. In order to find stay-points, speed and density conditions are used as opposed
to common distance and time limits. After raw locations are condensed to stay-points,
significant locations are obtained as in this thesis via DBSCAN.

The extraction of key locations from anonymised CDRs is a topic addressed by Isaac-
man et al. [13]. In a first stage, cell towers in a location trace are spatially clustered.
Here, a location trace consists of multiple CDR entries, or so-called mobile network
events. In a second stage, the importance of each cluster is determined. This is done
using a logistic regression model. Isaacman et al. additionally propose a method based
on logistic regression that estimates the key locations Home and Work, given a list of
important cell tower clusters.

Gambs, Killijian and Prado Cortez discuss Points of Interest as their fundamental
building block in next place prediction [10]. The DJ-Cluster algorithm (cf. Section 2.2.4)
is applied to discover the points of interest by first removing non-static or redundant
location traces. Subsequently, clusters are formed according to a radius and a minimum
number of data-points, and in a final stage clusters with common traces are merged.

Using the term semantic, rather than significant location, Ying et al. emphasise the
benefits of using semantic labels as an addition to geographic trajectories [32]. Similar
or equal semantic trajectories can have profoundly different geographic location traces.
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On the other hand, similar geographic trajectories can have various possible semantic
location sequences. After applying various algorithms for stay-point extraction and
density-based clustering for finding locations, every geographic trajectory is translated
into a sequence of significant locations. Finally, semantic labels obtained from a spatial
database are assigned to each of these locations.
To reduce the computational effort of processing raw location data, this thesis follows

the proposition of Li et al. for the extraction of stay-points based on a distance and
time threshold [16]. Their approach is not only based on data with similar structure,
but also very intuitive. When these condensed location points are computed, we take
the work of Yang et al. as an example and apply DBSCAN in order to find significant
locations of a user [30]. The design of DBSCAN for spatial data is well suited for our
task, and provides benefits such as an arbitrary amount of clusters. In addition to that,
implementations of DBSCAN are available in common clustering libraries.

3.2 Next Place Prediction

Mining and processing human trajectories is nothing new. Together with a multitude of
purposes, different algorithms have been applied for predicting where people might go
next. Some of the most notable machine learning models that have been used for next
place prediction are Bayesian models, neural networks and clustering methods [25]. How-
ever, also pattern matching algorithms and state-based techniques have been applied.
The latter contain, among others, hidden or regular Markov models. In what follows, we
summarise different approaches to next place prediction for the most important groups
of models.

3.2.1 Markov Models

Markov models in all their variations are used frequently to find possible future locations
of a user. Mathew, Raposo and Martins first cluster location histories based on time
[20]. Thereafter, one HMM is trained for every cluster, such that one model corresponds
to a specific type of location history. In order to obtain a prediction for the next
location, the cluster most likely associated with the trajectory thus far is chosen, and
the corresponding HMM is used to find the most probable following location.
Gambs, Killijian and Prado Cortez propose a Mobility Markov Chain (MMC) for next

place prediction [10]. More precisely, they work with an n−MMC, in which the states of
the model correspond to n significant locations. In addition to a set of states, a MMC
includes transitions obtained from labelled mobility traces, describing the probability of
moving from one state to another. The predicted next place is derived by taking the
n previously visited significant locations, and finding the most probable transition to a
next state.
After extracting significant locations from historical trajectories, future places are

predicted via a statistical model in the work of Yang et al. [30]. They propose a variable
order Markov model, and use partial matching for the prediction task.
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Qiao et al. propose a hybrid Markov-based model for mobility prediction [25]. The
input of the prediction algorithm includes data obtained from a cellular network, con-
sisting of a user-identifier, a time-stamp and city-hotspot identifiers. Before the next
location is predicted, typical mobility sequences of a user are used to determine the
order of the Markov predictor. Furthermore, Qiao et al. adjust the predictions of their
approach based on other users with similar mobility patterns.

Also in the approach presented in this thesis a Markov model will be applied to predict
next locations. More precisely, we use a HMM with states based on previously extracted
significant locations.

3.2.2 Artificial Neural Networks

Despite the fact the Artificial Neural Network (ANN) has been gaining popularity the
last decade, its application for next place prediction is rather limited. Akoush and Sameh
predict future locations via a hybrid Bayesian Neural Network (NN) in order to manage
network resources more efficiently [1].

The proposed model allows Bayesian inference as its output consists of a probability
distribution, describing the uncertainty of a prediction [1]. It has one single hidden layer
with 15-25 hidden neurons, and its input comprises data about current and previous cell
towers, as well as temporal information. Integrations which are necessary for Bayesian
learning are approximated with the help of Markov Chain Monte Carlo (MCMC) meth-
ods.

De Brébisson et al. predict future locations of taxis based on a sequence of initial,
partial GPS trajectories and meta-data [6]. The ANN model that is proposed has a
single hidden layer, consisting of 500 hidden Rectifier Linear Units. Its output is a tuple
of latitude and longitude, computed as a weighted average of predefined location cluster
centres. In addition to this, De Brébisson et al. conducted experiments with several,
more recent, models. The results obtained by applying a standard Recurrent Neural
Network (RNN), a Bidirectional RNN or a so-called Memory Network however, could
not match those achieved by the simpler ANN model.

3.2.3 Other Methods

There are plenty of alternative methods for next-place prediction. In addition to that,
various approaches exist which compare or even combine different techniques. Ying et al.
use geographic as well as semantic information for predicting the next location of a user
[32]. After computing candidate trajectories based on geographic scores, predictions are
adjusted with the help of semantic scores and the most probable path is chosen. This,
in turn, leads to a prediction of the next location of a user. To realise their approach of
next location prediction, Ying et al. propose adapted prefix-trees that represent semantic
trajectory patterns.

Providing improved services for users of context-aware mobile applications is the
main motivation behind the proposed work of Anagnostopoulos, Anagnostopoulos and
Hadjiefthymiades [2]. They approach next place prediction as a supervised classification

21



3 Related Work

task, by first applying K-Nearest Neighbours (kNN) and decision trees to classify tra-
jectories of a user, and providing a knowledge base for the location predictor. The most
likely future symbolic location is either found by predicting a mobile cell directly, or a
direction in which the user is moving.
Chon et al. look at different mobility models and their suitability for future loca-

tion prediction [5]. In particular, a location-dependent Markov model is compared to
a location-independent NextPlace model, which applies non-linear time series analysis
for predicting locations. Furthermore, various schemes that determine the information
extraction from data, among others, are put to the test.
Lv et al. propose a slot-based next place prediction model, and divide a day into 288

slots of 5 minutes [17]. Given a triplet containing the location of a base station, the
time-slot of arrival and the number of slots describing a stay, not only the next place
is predicted, but also the departure slot, i.e. when the transition to the next place will
occur. The temporal behaviour of a user is once more predicted with a variant of the
NextPlace model or a Markov-based model. For the prediction of the next location, two
variations of Markov models are applied.
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Reasoning about current or future locations of a person is often done with the help of
Markov models (cf. section 3.2). A class of relatively simple models that nevertheless
perform well for a multitude of tasks, is the class of HMMs [15]. Particularly interesting
is therefore the application of HMM to perform next place prediction. The simplicity
behind a HMM, however, also comes with restrictions and limitations. The discrete
state-space of HMMs (cf. section 2.3.7), as an example, prevents us from being able to
predict continuous coordinates as our next places. As we still want to look at next place
prediction with the class of HMMs however, we do not circumvent this issue by using
models with a continuous state-space. Instead, we discretise the raw coordinates, about
which we want to reason, before we can use HMMs.
Preparing raw data for its usage is done in two steps, namely the extraction of stay-

points and significant places respectively. This form of pre-processing provides us with
a discrete representation of the raw, continuous, location data we want to work with.
Thereafter, we can use the pre-processed data to train a HMM that allows us to predict
the next, most probable place a user will be at. A possible structure of this model for
next place prediction is the third and major topic.

All illustrations of clustering algorithms, applied during the pre-processing of data in
what follows, originate from results obtained with the help of the scikit-learn library for
Python [23], unless stated otherwise.

4.1 Extracting Stay-Points

To obtain a discrete representation of continuous location data, we want to determine
locations that are significant to a user. Before significant places can be extracted, how-
ever, it is useful to group raw location data in stay-points. A stay-point contains a
temporal factor next to location information, ensuring we later on solely consider loc-
ations a users stays at for a certain amount of time. The extraction of stay-points as
opposed to clustering raw location data avoids issues in finding significant places where
sampling is more sparse, e.g. in buildings [16]. After all, most cluster algorithms require
a high density of points around a centre point to detect the presence of clusters. Regions
where a user often passes by, on the other hand, could be falsely considered meaning-
ful for the clustering algorithm without a stay-point extraction. In addition to this,
the smaller input space after extracting stay-points reduces the computational effort of
clustering noticeably.

Li et al. propose a way to extract stay-points from GPS data [16]. Figure 4.1 illustrates
their notion of a stay-point, obtained from a list of logs containing coordinates, described
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Figure 4.1: GPS entries and types of stay-points

by a time-stamp, latitude and longitude.
A stay-point can be thought of as a geographic region where a user remains for a while

[16]. Therefore, it can be argued that stay-points carry semantic meaning. Figure 4.1
depicts two different kinds of stay-points. The first kind, stay-point 1, corresponds to
a particular log-entry. The user here stayed at the respective location for a time-span
longer than a certain timing threshold. The second type, i.e. stay-point 2, describes the
case in which a user did not remain stationary, but rather moved within a relatively small
radius for a certain period. While the first kind of stay-point is located at the respective
location of the log-entry, the coordinates of the second are computed by averaging over
latitude and longitude of all contributing GPS points.
In our approach we apply the algorithm proposed by Li et al. to extract stay-points.

As later experiments will show, however, we do not restrict the data to solely originate
from GPS devices. In order to compute stay-points from the raw location data, the
algorithm requires two threshold parameters. The first parameter is a spatial threshold
that specifies the radius in which points need to lie to be considered as one location. The
second parameter is the minimal time-span the user needs to be in the same location.

4.1.1 The Implementation

Algorithm 1 depicts pseudo-code, describing the core idea of the stay-point extraction
method proposed by Li et al. Input data P is the base of our stay-points, namely a
sequence of temporal locations, i.e. locations with their time of recording. As stated
previously, the algorithm additionally requires a spatial and temporal threshold. These
thresholds control the number, as well as the specific location of a stay-point we extract.
The procedure in algorithm 1 begins with computing spatial, as well as temporal

distances between a point in the input data P , and its temporal successors. As long
as we remain below the distance and timing thresholds, the user stayed within close
proximity for a period of time, i.e. the points contribute to a stay-point. If we surpass
the thresholds however, we reach the border of a stay-point. In this case, we compute
the mean coordinate of previously discovered stay-point, as well as arrival and departure
time, and we store the stay-point in a list of stay-points. Thereafter, the first point across
the border is used in the search for subsequent stay-points.
The log-files of different users tend to have largely varying scales, which might require

24



4.2 Finding Significant Locations

Algorithm 1 Stay-Point Extraction; Adapted from [16]
1: procedure staypoint_detection(P, dist_thres, time_thres)
2: # Input: Input data P , distance threshold dist_thres
3: and time span threshold time_thres
4: # Output: set of stay-points SP
5:
6: i← 0, pointnum←| P |
7: while i < pointnum do
8: j ← i+ 1
9: while j < pointnum do

10: dist← distance(pi, pj) # Compute distance between two points
11: if dist > dist_thres then
12: delta← pj.t− pi.t # Compute time span between two points
13: if delta > time_thres then
14: s.coord← meancoordinate({pk | i ≤ k < j})
15: s.arrival_t← pi.t, s.depart_t← pj.t
16: SP.insert(s)

17: break
18: j ← j + 1

19: i← j

20: return SP

different parameters for a good stay-point extraction. Therefore, we chose to normalise
the coordinates within a log-file optionally before applying the original algorithm (cf.
algorithm 1).
Figure 4.2 visualises a trajectory with non-normalised coordinates on the left-hand

side. The coordinate of a single point in the trajectory is a latitude-longitude pair
in radians. The same trajectory with normalised coordinates is given to the right.
As the image illustrates, the only visible change is the labelling of the two axes. In
order to achieve this, latitude and longitude are not normalised separately; instead, the
normalisation makes sure to modify latitude and longitude to lie between zero and one,
while simultaneously maintaining the ratios of different data-points.

4.2 Finding Significant Locations

As HMMs require a discrete state-space (cf. section 2.3), continuous geographic coordin-
ates cannot be used directly for next place prediction. Extracting significant locations
from raw location data provides us with a discretisation of the input data. In section
4.1, we discussed the advantages of performing this extraction on previously determined
stay-points, as opposed to raw coordinates.

As stated before (cf. section 3.1), multiple stay-points make up one significant place.
Intuitively, this means that we tend to spend a lot of time at restricted areas that are
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Figure 4.2: Left-hand side: Coordinates before normalisation. Right-hand side:
Coordinates after normalisation. Trajectory originates from the Geolife

dataset (cf. section 5.1)

meaningful to us, such as our home. When extracting stay-points, we take the factor
time into account. This enables us to find locations where a person spends at least a
certain amount of time. In other words, the extraction of stay-points is a process that
filters out places a user does not spend a lot of time at. Therefore we can discard the
temporal factor and focus on finding the geographical location of significant places.
In order to find locations that are meaningful to a user, we subsequently group or

cluster stay-points to retrieve significant places. Section 2.2 provides us with the neces-
sary tools for this task. Before the stay-points can be clustered, however, we need to
find the best clustering algorithm for this task.

4.2.1 Choosing a Clustering Algorithm

To describe significant places, we will use discrete labels, e.g. home, office, etc. As
opposed to their underlying, true, locations, a lot of these labels might overlap for a vast
number of users. Nevertheless, significant places can differ in type and number from one
user to another, as illustrated in Figure 4.3. Meaningful locations are therefore determ-
ined for every user separately, instead of using data of multiple users simultaneously for
the extraction of significant places.

home 

office 

home 

office 

university 

Figure 4.3: Two users with different numbers of possible significant places. Chosen
labels are examples; Trajectories originate from the Geolife dataset (cf.

section 5.1)
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Keeping the previous considerations, about the varying number of significant places
and underlying stay-points, in mind, we look for a clustering algorithm suited for the
task of finding meaningful locations. If we examine the basic methods presented in
section 2.2, two main issues emerge.

The first issue is that most common clustering algorithms are only able to find a
predefined number of clusters. The name-defining characteristic of the K-means clus-
tering algorithm is the predefined number of clusters k. Figure 4.4a shows an example
for which a reasonable k has been chosen. The overall grouping of stay-points appears
reasonable to the human eye. Only for the lower right cluster, it could be argued that
the data points lie rather far away.

(a) Suited number of clusters (b) Unsuited number of clusters

Figure 4.4: Extraction of significant places with K-means and k = 3. Exemplary
trajectories originate from Geolife dataset (cf. section 5.1)

Oppositely, Figure 4.4b shows a second trajectory, where it looks very much like if
there would be two significant places. However, K-means is forced to find three point-
groups, since k has been set to three. Because k is bigger than the actual number of
clusters, some of these clusters will be split up.

Adjusting the predefined number of clusters k could avoid this kind of issue for the
second trajectory. This, however, would require finding a suitable number of significant
locations and therefore distinct clustering parameters for every single user, thus introdu-
cing a new issue. Even for relatively small datasets, a manual estimation of meaningful
places would demand extensive additional data pre-processing. What we aim for instead,
is a clustering algorithm that is able to find a suitable number of clusters by itself.

The second issue with many of the commonly used clustering algorithms, is that
each point must be assigned to a cluster. Since not all stay-points correspond to a
significant location, this is actually problematic. Whenever a person remains, for a
longer period of time, within a small region that does not carry any significant meaning,
a corresponding stay-point will be extracted as soon as the spatio-temporal conditions
are satisfied. A specific example could be stopping during a walk, in order to talk to a
person. Nevertheless, stay-points that result from events like this, do not contribute to
a significant location, and should be treated as noise.
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Figure 4.5 shows results obtained with various types of clustering algorithms. In their
traditional implementation, they can come across issues with stay-points that represent
noise. The images on the left-hand side once again illustrate clustering results that
correspond to our intuition. The trajectories on the left in Figure 4.5 consist of three well-
separated sets of stay-points. When clustering with a three-component GMM, the three
corresponding significant locations can be detected clearly. Agglomerative hierarchical
clustering and affinity propagation (cf. section 2.2.5) lead to equivalent assignments of
clusters. Note that a permutation of the cluster numbers does not affect the results
in any way. After all, the purpose of clustering is to find groups of points that belong
together, not to assign labels to the data.
The right-hand side of Figure 4.5, on the other hand, demonstrates how these al-

gorithms struggle to handle isolated stay-points that do not belong to significant places.
Both the three-component GMM and affinity propagation are unable to find different
clusters. The outlier stay-points disable the capability of these algorithms to distinguish
between any significant location in this case. Agglomerative hierarchical clustering, on
the other hand, is capable of distinguishing multiple clusters. Different hierarchical
levels, each corresponding to a possible clustering result, allow us to choose a cluster
assignment with e.g. three significant places. Nevertheless, the three clusters seem to
be larger than necessary, since isolated points are also assigned to the nearest cluster.
In all three clusters obtained from agglomerative clustering, the majority of stay-points

is located relatively close to each other, i.e. with high spatial density. Nevertheless, two
of these three clusters also contain stay-points that lie isolated from the remaining points.
These stay-points, which occur by themselves, indicate that the user does not frequent
these positions. Before labelling a stay-point as noise however, it should be assured that
the geographic distance to other fixed points is sufficiently large.
To circumvent both of these issues in the detection of significant places, we need a

more sophisticated approach. Concretely, our clustering algorithm should be able to
detect the number of clusters from the data and support noisy data points. We want to
look for a better suited clustering algorithm, that ideally allows us to circumvent these
issues. As shown in previous section 3.1, the density-based DBSCAN method has been
applied for the task before (cf. [19]). As the algorithm was developed for clustering
spatial data [7], it offers solutions to our difficulties by design. Next to the consideration
of noise, DBSCAN does not need a predefined number of clusters, and is built to find
clusters with arbitrary shape.
Figure 4.6 illustrates the result of applying DBSCAN to the trajectory with noisy stay-

points that presents the GMM, agglomerative clustering as well as affinity propagation
with a challenge. If we cluster stay-points of this trajectory with DBSCAN, we do not
need to define the number of clusters to be extracted on beforehand. Instead, we have to
provide a minimum number of points and a radius ε for the clusters that are to be found
by the clustering algorithm. With parameters ε = 0.05 and min_points = 5, DBSCAN
discovers three different clusters and therefore significant locations. Compared to the
results obtained previously by the agglomerative hierarchical clustering approach, some
deviations become clear. Most notably, the additional set of stay-points which now is
not assigned to any of the clusters, and thus represents noise.
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(a) Method: GMM with components = 3;
little noticeable noise in stay-points

(b) Method: GMM with components = 3;
noticeable noise in stay-points

(c) Method: Agglomerative clustering,
clusters = 3, linkage = ward ;

little noticeable noise in stay-points

(d) Method: Agglomerative clustering,
clusters = 3, linkage = ward ;
noticeable noise in stay-points

(e) Method: Affinity propagation,
affinity = euclidean;

little noticeable noise in stay-points

(f) Method: Affinity propagation,
affinity = euclidean;

noticeable noise in stay-points

Figure 4.5: Extraction of significant places with various clustering algorithms.
Exemplary trajectories originate from the Geolife dataset (cf. section 5.1)
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Figure 4.6: Extraction of significant places with DBSCAN, where ε = 0.05 and
min_points = 5; Trajectory originates from the

Geolife dataset (cf. section 5.1)

4.2.2 Applying DBSCAN for Significant Location Detection

Previous considerations indicate the suitability of applying DBSCAN for the detection
of significant places in this thesis. The design of this algorithm manages to circumvent
main discussed issues of common clustering algorithms with spatial data. Whenever we
try to extract significant locations based on previously determined stay-points in the
remainder of this thesis, we will apply the implementation of DBSCAN provided by
scikit-learn [23]. As opposed to other, more recent density-based clustering approaches
(cf. section 2.2.4), DBSCAN is thus already part of commonly used libraries. The two
parameters of DBSCAN, i.e. a radius and minimum number of points to form a cluster,
are chosen based on subsequent experiments presented in section 5.3.

4.3 Predicting Next Locations

Predicting the next location of a user is done with the help of a HMM. The application of
these and other models, which assume the Markov property to hold, is well represented
in next place prediction literature (cf. section 3.2). The main goal of the next place
prediction is to learn a model that encodes the whereabouts of a person. This model can
then be used as a basis for determining how likely it is for that person to be detected at
some position. In the future, similarities or discrepancies between predicted and sensed
locations of a person could be used to make security-based decisions, e.g. in the course
of authentication processes.
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4.3.1 The HMM Structure

In section 2.3, we found that three components fully specify a HMM. These are the
initial state probabilities, as well as the state transition and observation model. All
three components contain likelihoods associated with the state and observation variables,
which are the structural building blocks of a HMM. The state variables are latent, which
means that the current state of a dynamic system cannot be directly observed. In order
to reason about the true state of a system, observable values have to be used instead. For
our task of next location prediction, the state of the system corresponds to the true, but
not directly observable location of a person. Sensor output, consisting e.g. of measured
coordinates, are possible observations of the system.

As stated previously, the state space of a HMM is discrete. This means that the
next place prediction of our model must be one of a discrete set of location labels. The
set of possible locations here corresponds to the extracted significant places, which we
determined during pre-processing (cf. section 4.2). Therefore, we chose the number
of states to be equal to the number of extracted significant places for our model. We
also added one additional state for data-samples that were not assigned to a particular
significant place, i.e. noise.

In contrast to the discrete nature of states in a HMM, observations can originate from
discrete, as well as continuous distributions (cf. 2.3.7). In the dynamic environment our
system is acting in, observations correspond, as the name suggests, to everything we can
observe. In particular, everything that can be observed with the help of sensors that are
able to capture location information. Naturally, these sensors are heterogeneous, and
differ e.g. in the sampling rates in which new observations are sensed. Another example
would be the heterogeneity between stationary biometric sensors, which do not sense
continuous location traces, but offer a high confidence in detecting a person at a specific
place; and GPS sensors, which observe location traces, but might not exhibit as high of
a confidence in its records. For now, we want to neglect this heterogeneity, and take a
specific look at what all these sensors can provide.

Continuous observations obtained from a sensor that captures location information,
could be a coordinate consisting of a latitude-longitude pair, equipped with the time-
stamp describing the exact point in time at which the location was recorded. Also
the altitude could be a possible continuous observation that would be easily retrievable
by a lot of sensors. Since the stay-point extraction and thus the detection process of
significant places does not differentiate between the height of different locations, however,
this factor is neglected in this thesis.

Applying a HMM with discrete observations for the task of next place prediction
on the other hand, requires a discretisation of continuous sensor measurements. One
possible way to discretise coordinates is the detection of significant locations, as shown
in our pre-processing step (cf. section 4.2).

In order to discretise time-stamps, which encapsulate a date as well as the time of
day, we can think of different granularities. As people tend to re-visit places with a
temporal periodicity (cf. [5]), extracting the day within a week could be one possibility.
With coarser granularity, we could also determine whether the time-stamp belongs to a
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day on the week-end, or not. Considering the time, we could divide the day in different
time slots with various granularities, e.g. night vs. day, hours, etc. Table 4.1 shows a
summary of continuous, as well as discrete observations, that have been considered for
the task of training a model for next place prediction.

continuous discrete

time-stamp day of the week
latitude weekday/weekend
longitude hour of day
altitude hour slots

. . . location tags
. . .

Table 4.1: Possible continuous and discrete observations for our HMM

As stated in section 2.3.7, the observation model of a HMM is typically a continuous
probability density function in the case of continuous observation variables. How these
functions look like, can strongly depend on the kind of continuous observation we work
with. Revisiting the possible continuous observations in table 4.1, it seems reasonable to
assume that the latitude and longitude of the raw data points that make up a significant
location are distributed according to a Gaussian or normal distribution. One single
state, corresponding to a particular significant place, is then described by observing the
mean latitude or longitude on average, with a certain variance. This does not hold for
every other sort of observation, however. Time stamps, for example, do not stay close
to their mean value as measurements do not occur at the same time. The probability
density function, which maps continuous observations to discrete states, therefore has
to be chosen strongly depending on how the continuous observations look like.
One such continuous probability density function that has already been discussed,

is a mixture of Gaussians, which is also used in GMM for clustering. More precisely,
GMM-HMMs use GMMs to model observations and their probabilities. Since we are
able to cluster, and hence discretise, the data better than with GMMs, however, we can
focus on using discrete observation variables in our HMMs. The observation model of a
HMM with a discrete observation variable can be thought of as a matrix that contains
the probability of observing a certain discrete observation value in a state, for each state
of our model. In the dynamic environment our system is acting in, we can choose the
observation variable to be the day of the week, as an example. The observation model
then describes how likely it is that we observe that it is e.g. Monday, while we are
currently at a certain location, for every significant place of a user.
A schematic HMM for next place prediction with three states, i.e. two significant

places and one state for noise, is illustrated in Figure 4.7. The arrows between states visu-
alise state transitions, which are assigned probabilities by means of the state transition
model. On the other hand, arrows pointing from states to observations are described in
the observation model, which encodes the probability of making an observation when
the system is in a specific state. With this basic structure for our HMM in place, we can
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focus on the granularity of the observation variables and the unknown probabilities in
the model. Concretely, we still need to learn probabilities for the observation and state
transition models as well as find the correct granularity for discretising time.

noise loc1 loc2

Monday Tuesday . . . Sunday

Figure 4.7: Exemplary 3-state HMM. Discrete observations correspond to days in the
week. Upper, purple, arrows describe state transitions; lower, green, arrows

possible observations in a state.

4.3.2 Learning HMM Parameters and Next Place Prediction

Apart from the structure of our HMM, as discussed in section 4.3.1, we also need prob-
abilities that are encoded in a state transition and observation model to do next place
prediction. These probabilities are the parameters of a HMM and define its behaviour,
allowing us to shape HMMs with a desired behaviour by adapting the probabilities ac-
cordingly. Because it is impossible to specify HMM parameters by hand, we need to
rely on available data and a training procedure to have our HMM exhibit the expected
functionality.

The basic approach to learn HMM parameters was introduced in section 2.3. The
main idea is to change the parameters so that it becomes more likely for the data to
originate from our model. For the HMM we are training, this sequence consists of
discrete observations, such as location labels, the day of the week, or combinations
thereof. For each observation, we also have the correct location, which will be our target
label, available. This target is the significant place we want our model to predict as
a next place, corresponding to the location label of the next time-step. Due to the
availability of target labels, the HMM is trained in a supervised fashion. The main
difference, as opposed to learning approaches such as the Baum-Welch algorithm, lies in
the computation of the probability that we try to maximise. The defined target labels
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influence the probability of our model in a positive way if we manage to perform correct
predictions, and in a negative way otherwise.
After the HMM is trained, i.e. the model parameters have been learned, we can

apply the HMM for next place prediction. Section 2.3.8 provides us with common
inference tasks, which can be used to find the most likely state that our model is in,
given observations thus far. In particular, we use the forward-backward algorithm to
obtain a sequence of most likely states, based on every observation we give to the model.

4.3.3 Implementation and Choosing the Final Model

While previous sections both covered the main structure of our HMM, how HMM para-
meters can be learned, and finally how the model can be used to predict next places,
there are still some points that need to be cleared. In particular, in this thesis we trained
multiple models, which exhibit the same state space, but differ in their observations.
Building the structure of the HMM, as well as the process of learning its parameters
has been done with the help of the pomegranate library [28]. Its source-code is openly
available on Github1.
The library is also used to perform inference with the trained HMM, allowing us to

predict next places in a straightforward fashion. At the same time, comparing predicted
locations to target labels helps us to determine the performance of our model. More
precisely, in this work we apply 4-fold cross validation to compare multiple models (cf.
section 2.3.10). On one hand, we trained a HMM for next place prediction that does
not use the time component of a sensor measurement in its observations, and focuses
solely on the discrete location description. On the other hand, models were trained with
observations that are the day of the week, whether it is a weekday or the weekend, and
the specific hour or hour slot within a day. In addition to this, also combinations of these
kinds of observations have been considered. The final HMM for next place prediction
has then been chosen based on the results of the experiments in the subsequent section.
When performing cross validation, the data is typically shuffled before being split into

k different sets, as we work with the assumption of the data being independent and
identically distributed. Shuffling our data arbitrarily however, would mean that we lose
all temporal order. To maintain some temporal dependencies in our data, we chose to
first split the data according to their day of recording. These sequences of days are
subsequently shuffled and split into k = 4 sets for training and testing respectively, as
opposed to shuffling data samples individually.
Algorithm 2 shows the main work-flow of our cross validation implementation in

pseudo-code. For a specific dataset, we retrieve the data for one particular user, split it
into daily sequences to maintain temporal information, and shuffle the days randomly.
After this, the main process of training and evaluation is performed. Here, k = 4 folds
of the data are extracted and for each fold, the model is trained on the data in the other
folds, and evaluated against the samples in the extracted fold. By averaging over the
accuracy of all users, we retrieve an overall performance estimate of our model on the

1https://github.com/jmschrei/pomegranate

34

https://github.com/jmschrei/pomegranate


4.3 Predicting Next Locations

data.

Algorithm 2 Basic cross validation work-flow for one specific dataset
1: procedure do_cv(users)
2: # Input: List of users users, could e.g. be directory
3: # Output: Mean accuracy of HMM on current dataset
4:
5: accuracies← []
6: for user ∈ users do
7: data← get_data(user)
8: data← split_into_days(data)
9: data← shuffle(data)

10: user_acc← []
11: for train_set, test_set ∈ get_splits_for_k_folds(data, k ← 4) do
12: model← build_model()
13: model.train(train_set)
14: res← model.evaluate(test_set)
15: user_acc.append(res)

16: accuracies.append(user_acc.mean())
return accuracies.mean()

When learning HMM parameters and using the trained model for next place prediction
as described above, the limitations of our previous choice to use discrete observations
quickly become clear. As soon as an observation is encountered that has not been part
of the training sequence, the HMM fails to do a prediction. The discrete nature of the
observations implies that only locations or time-descriptors that we have previously seen
in the process of parameter learning have a probability higher than zero of occurring. In
other words, by default, the model assumes that new observations cannot occur in our
environment. For now, we solve the issue by treating it as a wrong prediction. In the
future, this could be improved by e.g. assigning an emission probability larger than zero
to unseen observations (cf. [19]). However, approaches that tackle this issue require at
least some knowledge about what could be unseen observations in the future.
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5.1 The Datasets

In order to determine the performance of previously introduced approach of next place
prediction, real input data has to be considered. This is done with the help of two
different datasets. The Geolife GPS Trajectory Dataset has been provided by Microsoft,
and will be the first base of our experiments. Secondly, we collected our own set of data
for the task, which will be described in greater detail in section 5.1.2.
Figure 5.1 shows two exemplary trajectories of the datasets. An example for a traject-

ory from the data that was collected for this research, is depicted on the left-hand side.
The right-hand side oppositely displays a partial trajectory from the Geolife dataset.

Figure 5.1: Left-hand side: Trajectory collected from a participant of our data
collection process over the course of 24 days.

Right-hand side: Partial trajectory consisting of first 10000 location points,
collected from the Geolife dataset over the course of 13 days. The

underlying maps of both images were provided by OpenStreetMap under
the Open Database Licence. The colour gradient illustrates the passage of

time.

5.1.1 The Geolife GPS Trajectory Dataset

The Geolife GPS Trajectory Dataset was published by Microsoft in 2011 [33]. As the
name suggests, it consists of GPS logs that have been recorded through various devices by
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178 users. The Geolife dataset was collected over a period of multiple years in total, and
provides temporal information as well as geographical data, i.e. latitude, longitude and
altitude. The altitude of a geographic location will not be considered in our experiments
however.
Participants of the Geolife dataset collection process recorded various different activit-

ies in their day-to-day life. Most of the data has been collected from subjects in Chinese
cities [33]. Nevertheless, also trajectories from places located in the US and Europe are
part of this open GPS dataset. All recorded location traces are available in files with a
.plt extension.
The sampling rate, although generally high, varies strongly from one participant to

another. The majority of trajectories are logged every one to five seconds [33]. The
records are not always consecutive, however, and can have breaks of multiple days.
The recorded time-span of different users varies notably in the Geolife dataset. Since

our main goal is to learn about day-to-day routines concerning the whereabouts of a
person, all subjects with less than seven days of recording have been discarded. The
resulting dataset that we use for our experiments is left with trajectories for 111 people.

5.1.2 The Collected Dataset

The Geolife GPS Trajectory Dataset does not provide us with ground-truth that is
necessary for determining the performance of our work, in particular, the detection of
significant locations. Therefore, we additionally collected a set of data with location
annotations. Due to limited resources, this dataset is significantly smaller than the
Geolife dataset, but is still useful to assess the quality of proposed algorithms.
The collection of our dataset was done with the help of a mobile application for

Android devices. Ten participants recorded data for a period of 13 to 33 days. The
profession of the participants at the time of recording diverges; people with flexible or
regular working hours are represented as well as students and users without current
occupation. The application adapts the GPS Logger for Android that is available in the
Google Playstore1 as well as on Github [21]. Location logs retrieved through this mobile
application, were stored in CSV files.
When looking at the origin of collected location information, the data can be divided

into two categories. The main source of the data is the GPS of a mobile phone, and
has been employed by every participant. In addition to that, intermediate location
measurements were collected using network services, i.e. cell towers and WiFi signals,
if available. The logging interval was set to 30, assuring that at least 30 seconds passed
before a new log-entry was made.
The collected dataset contains information that is very similar to the Geolife dataset.

Most importantly a time-stamp, latitude, longitude and altitude; furthermore, the source
of the measurements and a user-annotated label are part of recorded log-entries. Before
starting the data collection, every participant was asked to repeatedly annotate places
significant to them, i.e. locations they visit regularly for a longer amount of time. The

1https://play.google.com/store/apps/details?id=com.mendhak.gpslogger
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5.2 Pre-Processing: Extracting Stay-Points

labels serve as ground-truth for the extraction of significant places, as will be discussed in
subsequent experiments. In order to simplify the annotation process for the participants,
location labels could be added manually or with the help of Near Field Communication
(NFC) tags. The Android application that was used for recording was therefore extended
so that it can read this kind of tags, and add an appropriate annotation for the current
location.

While providing a base for performance evaluations, the user-annotated labels still
exhibit limitations. One issue could be a certain degree of faulty annotations, e.g. due
to some room for interpretation in the definition of significant locations. On the other
hand, labels were recorded infrequently, as an annotation was only made once during
a visit of a certain significant location. In other words, not every recorded sample has
its true location label available. Nevertheless, the labels allow us an evaluation of the
proposed method.

5.2 Pre-Processing: Extracting Stay-Points

As mentioned in section 4.1, the first step in predicting next locations is to extract
stay-points from the raw location data. This extraction of stay-points serves as a pre-
processing step, which should first and foremost simplify the task of finding buildings
that represent significant places. At the same time, using stay-points as opposed to raw
data for further processing can result in reduced computational complexity. This is due
to the fact that stay-points are based on accumulations of raw points in a trajectory,
which naturally results in a smaller amount of points.

Two main arguments control the extraction of stay-points proposed by Li et al., and
previously described in algorithm 1. To tune these arguments, i.e. the thresholds for
distance and time, we perform a grid search. The resulting stay-points for some of the
considered settings are displayed in Figure 5.2. The thresholds mainly affect the number
of stay-points that are extracted, but also the exact positions are different. The images
show a trajectory of the Geolife dataset, composed of raw, non-normalised, location
points visualised by means of their respective longitude and latitude in radians.

Figure 5.2a visualises the stay-point extraction with dist_thres = 30 and time_thres =
60. Without a prior normalisation of longitude and latitude, this corresponds to detect-
ing a stay-point whenever a person stays for at least 60 seconds within a radius of 30
meters. The short time-span implies a rather high number of extracted stay-points, as
this can happen frequently in a daily routine.

On the other hand, Figure 5.2b illustrates the consequence of increasing the timing
threshold. With dist_thres = 30 and time_thres = 60 ∗ 60, we reduce the number of
detected stay-points significantly. In other words, by requiring people to be at the same
place for 60 minutes to create a stay-point, we extract a subset of previous extracted
stay-points.

The third image, Figure 5.2c, shows the result of increasing the distance threshold.
For non-normalised trajectories, taking dist_thres = 6000 and time_thres = 60 ∗ 60
implies, that we detect a stay-point as soon as a person stays within 6000 meters for at
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least 60 minutes. Since an increased area allows more raw measurements to be combined
into a single stay-point, this again leads to a reduced number of extracted stay-points
compared to the case where dist_thres = 30 and time_thres = 60. In other words, one
stay-points captures the information for more of the raw longitude-latitude pairs. As the
mean-coordinate of a stay-point strongly depends on contributing location points, this
also explains the slight shift in the placement of stay-points in Figure 5.2c, compared to
the results in Figures 5.2a and 5.2b.

(a) dist_thres = 30 and time_thres = 60;
Small distance and time thresholds lead

to a high number of extracted stay-points.

(b) dist_thres = 30 and time_thres = 3600;
The increased timing threshold lessens the

number of extracted stay-points.

(c) dist_thres = 6000 and time_thres = 3600;
Increasing the distance threshold lessens
stay-points, and shifts their locations.

Figure 5.2: The influence of different parameters for the stay-point extraction.
Trajectory taken from the Geolife dataset. Longitude and latitude values

are given in radians.

In their work, Li et al. chose a distance threshold of 200 meters, and a time threshold of
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30 minutes for the extraction of stay-points [16]. In our approach however, we conducted
a random search over a grid with different distance thresholds ranging from 100 to
1500 units with an average interval of 50, and time thresholds ranging from 1 to 120
minutes with intervals of 5 to 10 minutes. As the process of stay-point extraction has
immediate impact on how well the subsequent detection of significant places performs,
this performance will be used as a base to judge the eligibility of possible stay-point
extraction arguments.

5.3 Pre-Processing: Finding Significant Locations

After extracting stay-points based on trajectories, we determine what regions could
be important to each user. This means that we have to group stay-points to form
significant places. In section 4.2, we looked at some issues occurring with common
clustering algorithms from a more abstract point of view. In this section, we want to see
how well these algorithms perform on real-world data. For this, we will primarily focus
on the dataset that we collected. The annotations made by the participants give us an
idea of places that are significant to them, and in particular, how many of these places
there are to detect. As the annotations have been recorded infrequently, i.e. the true
significant location is not available for every recorded sample, clustering results cannot be
compared and therefore evaluated directly. Instead, we rank the performance of different
algorithms primarily by their ability to find the correct number of clusters. In addition to
that, we compare the average coordinates of predicted and recorded significant locations
in section 5.3.6. The often diverging number of predicted and true locations however,
does not allow a straightforward computation of its deviations.

In what follows, the Mean Squared Error (MSE) of different clustering methods de-
scribes how close the algorithm can approximate the real, annotated, number of signi-
ficant locations of a user. It is computed as

MSE =
1

N

N∑
i=1

(
Yi − Ŷi

)2
. (5.1)

Here, Y denotes the real number of significant places of a user; Ŷ on the other hand,
describes the predicted number thereof. N is the total amount of users in the dataset.
In order to find the best clustering algorithm, we should consider multiple parameter

settings for each of the algorithms. This can be done by conducting a grid search over
different parameters, and explore the impact of these arguments on the MSE. First and
foremost, we will look at parameters specific to each clustering method. As discussed
in section 5.2, however, we also need to find the best arguments for the extraction of
stay-points, i.e. a fitting distance and time threshold. Finally, possible consequences of
normalising coordinates (cf. section 4.1.1) prior to the extraction of stay-points will be
examined.
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5.3.1 Finding a Predefined Number of Stay-Point Clusters

The first issue when applying common clustering algorithms for the task of significant
place detection is the need to specify the number of resulting clusters (cf. section 4.2).
While a vast number of algorithms introduced in section 2.2 exhibits this characteristic,
the prime example is the K-means clustering algorithm.
The main argument of the K-means algorithm is the number of clusters, k. In addition

to this, we want to find fitting time and distance thresholds for the stay-point extraction
itself, as previously mentioned. Finally, we examine the impact of normalising latitude
and longitude prior to the extraction of stay-points.
Figure 5.3 shows results obtained by applying the K-means algorithm with k =
{3, 4, 5} to two different participants of our dataset. The real number of significant
places is five for the images on the left-hand side, and three on the right-hand side.
For K-means clustering, the predicted amount of significant locations is equal to the
predefined number k. This means that normalising or adapting the thresholds for stay-
point extraction will not have an impact on the MSE. However, it does change where
exactly the stay-points are located.
Table 5.1 lists the MSE for different choices for the number of clusters k, as an average

over the ten users from our dataset. As other arguments leave the MSE unchanged, they
are not considered in the table.

k / nr_clusters MSE

1 8.7
2 4.3
3 1.9
4 1.5
5 3.1
6 6.7

Table 5.1: Average MSE of K-means and agglomerative hierarchical clustering applied
to our dataset

Simultaneously, table 5.1 shows the MSE of agglomerative hierarchical clustering.
Implementations of this algorithm typically require a predefined number of resulting
clusters, corresponding to the predicted amount of significant places. Once again, this
makes the prediction itself independent from other arguments such as the linkage (cf.
section 2.2.3), which is why both, K-means and agglomerative hierarchical clustering,
lead to the same MSE.
Figure 5.4 illustrates detected significant places, obtained by applying K-means and

agglomerative hierarchical clustering. The images show a trajectory, collected by one
user from our dataset. Choosing the number of clusters to be four, the amount of real
and predicted significant places of this user are equal for both algorithms. Nevertheless,
the two images visualise the weakness of solely looking at the MSE. Different algorithms
or parameters might result in the same, correct, but predefined, number of significant

42



5.3 Pre-Processing: Finding Significant Locations

(a) User 000, significant places:
extracted = 3, real = 5

(b) User 008, significant places:
extracted = 3 real =3

(c) User 000, significant places:
extracted = 4, real = 5

(d) User 008, significant places:
extracted = 4, real = 3

(e) User 000, significant places:
extracted = 5, real = 5

(f) User 008, significant places:
extracted = 5, real = 3

Figure 5.3: Clustering results of K-means when applied to two different users of our
dataset. The number of extracted significant places is equal to argument k.

Stay-points were extracted with dist_thres = 200 and
time_thres = 30 ∗ 60 from normalised data-points.
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places. They do, however, lead to considerably different arrangements of data-points
within the clusters.

(a) K-means clustering (b) Agglomerative clustering

Figure 5.4: K-means and agglomerative hierarchical clustering with linkage=average
applied to the trajectory of User 005 of our dataset. The algorithms lead to

different shapes of the clusters; they do not influence the number of
extracted significant places (4) however.

5.3.2 Finding Significant Locations with GMMs

Applying GMMs to the task of significant place detection leads to similar issues as the
application of K-means or hierarchical clustering, and requires a predefined number of
mixture components. First, we take a look at results obtained if we do not normalise
the coordinates of data-points prior to the stay-point extraction. Figure 5.5 illustrates
that despite defining three components for a GMM, we can actually get less resulting
clusters. Concretely, the image on the right-hand side shows the trajectory of a user,
who appears to travel a lot less on a regular day, as opposed to the user on the left-hand
side. This results in the points on the right-hand side to be grouped into one single
significant place, whereas we find multiple ones on the left-hand side.
Table 5.2 contains the MSE for different parameters, as an average over all users within

our non-normalised dataset. We previously mentioned, that the amount of predicted
significant places is at most the number of components of a GMM. Also, GMMs do not
support noise and therefore assign every point to a cluster, meaning that there is always
at least one cluster found, regardless of chosen distance or time thresholds. Therefore, a
GMM with nr_components = 1 achieves the same MSE as K-means or agglomerative
clustering with nr_clusters = 1.
For our dataset, table 5.2 also suggests that four components work well for GMMs,

similar to the performance peak of K-means and hierarchical clustering for four pre-
defined clusters. When extracting stay-points with a time threshold of ten minutes and
a distance threshold such as 200 meters, a four-component GMM results in a MSE of
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(a) Significant places:
extracted = 3, real = 1

(b) Significant places:
extracted = 1, real = 4

Figure 5.5: Trajectory of users 007 and 005 in our data-set. Result of clustering with a
three-component GMM, applied to stay-points extracted with

dist_thres = 100 and time_thres = 600 from non-normalised coordinates,
given in radians.

4.2. These two thresholds appear to generally perform well for different numbers of
components. The lowest overall error we achieved with a GMM in this scenario, can not
yet match with the results obtained with K-means or hierarchical clustering.

Normalising the coordinates of data-points before we extract stay-points, should en-
sure comparable trajectories. Especially for users, which travel vastly different distances
in their daily routine, this is useful. In experiments, based on the stay-point extrac-
tion of normalised data-points, we are therefore able to overcome previous issues that
were encountered with GMMs. In particular, this means we can find multiple significant
places even for users, which do not travel far.

Figure 5.6 shows a trajectory of one user within our dataset. The real amount of
significant places for this person is four; the number of components however varies from
one to six.

dist_thres time_thres nr_components MSE

any any 1 8.7
200 10*60 2 5.4
200 10*60 3 4.5
200 10*60 4 4.2
100 5*60 5 4.9
200 40*60 6 5.1

Table 5.2: Average MSE of GMM clustering applied to our dataset, with
normalised = False for all entries
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(a) Number of components = 1 (b) Number of components = 2

(c) Number of components = 3 (d) Number of components = 4

(e) Number of components = 5 (f) Number of components = 6

Figure 5.6: Trajectory of user 001 of our data-set, with four real significant places.
Result of clustering with a GMM with a varying number of components,

applied to stay-points extracted from normalised data.
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The images in Figure 5.6 illustrate an example for which the number of GMM com-
ponents corresponds to the amount of predicted significant places. As soon as we per-
form a normalisation of the data-points prior to the stay-point extraction, this happens
frequently, which is why the resulting MSE is similar to the results of K-means and
agglomerative hierarchical clustering in section 5.2. Table 5.3 contains a summary of
MSEs after applying GMMs to cluster stay-points based on normalised data. In the case
of one, two or three components, the results conform to the MSE achieved by K-means
and hierarchical clustering, for various time and distance thresholds. For an increasing
number of components, the error slightly deviates. This implies on one hand, that the
MSE of clustering with GMMs can be reduced from 4.2 as above, to 1.4, with the best-
fitting number of components again to be four. On the other hand, the GMM slightly
outperforms K-means and hierarchical clustering, as the number of resulting significant
places is not always bound to the amount of defined GMM components.

dist_thres time_thres nr_components MSE

any any 1 8.7
various various 2 4.3
various various 3 1.9
200 40*60 4 1.4
200 40*60 5 2.6
200 40*60 6 5.4

Table 5.3: Average MSE of GMM clustering applied to our dataset, with
normalised = True for all entries

5.3.3 Finding Significant Locations with Affinity Propagation

As opposed to previous clustering algorithms, affinity propagation does not require a
predefined number of clusters (cf. section 2.2.5). However, as discussed in section 4.2,
applying it to stay-points turns out to be challenging. This is due to the often high
amount of stay-points, which do not contribute to a significant place, and therefore
represent noise.

Let us first take a look at the results of affinity propagation when applying the al-
gorithm on stay-points that were extracted from non-normalised coordinates. Next to
the distance and time threshold for the stay-point extraction, we have to tune one para-
meter specific to affinity propagation. The so-called damping factor primarily helps to
avoid numerical oscillations during the update of messages, having a value between 0.5
and 1 [23].

Figure 5.7 shows the results from applying affinity propagation to the trajectories
of two users from our dataset. The predicted number of significant places does not
correspond to the real amount in both of the cases; however, the difference is relatively
small. With a distance threshold of 100 meters, and a time threshold of 60 minutes, the
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(a) significant places:
extracted = 2, real = 5

(b) significant places:
extracted = 6, real = 5

Figure 5.7: Trajectories of users 000 and 004 in our dataset. Result of affinity
propagation with damping = 0.93, applied to stay-points extracted with

dist_thres = 100 and time_thres = 3600 from non-normalised
data-points, given in radians.

average MSE over all users is 2.8 for a damping factor of 0.93. Nevertheless, the right-
hand side image of Figure 5.7 already indicates the issue with noisy stay-points. If we
reduce the damping factor, this becomes even more clear. Leaving remaining parameters
unchanged, and changing damping to be 0.5, the number of predicted significant places
for user 004 rises to 13. For other users, 20 or more significant places are predicted, as
noise tends to be assigned to entirely separate clusters.
Next to the impact the damping factor shows on the MSE, also distance and time

thresholds change the prediction obtained by affinity propagation. The first lines in
table 5.4 show the MSE, depending on different arguments, but with non-normalised
data-points. A low distance and time threshold, which result in a high amount of ex-
tracted stay-points (cf. section 5.2), presents affinity propagation with more difficulties.
Reducing the number of extracted stay-points and therefore the noise, results in a sig-
nificantly better MSE. This measure of performance does not, however, consider the
amount of noisy stay-points that have been put into separate clusters that eventually
lead to the high MSE.
The lower part of table 5.4 suggests that normalising coordinates of data-points prior

to the extraction of stay-points lowers the MSE. With a distance threshold of 50, a
time threshold of 60*60, and a damping factor of 0.93, we can achieve a MSE of 2.5.
Nevertheless, the noise remains a difficulty for the algorithm. Reducing the damping
factor to 0.5 results, with otherwise unchanged arguments, in a MSE of 451.0. Note
here, that for both, the normalised and non-normalised case, the same parameters led
to the best results in our grid search. This, however, is not common, as is illustrated in
Figure 5.8. For a damping factor of 0.5, the chosen distance threshold of 100 and time
threshold of 60*60 work a lot better for stay-points based on non-normalised data.
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normalised dist_thres time_thres damping MSE

False 50 20*60 0.50 2398.9
False 50 20*60 0.93 11.6
False 100 60*60 0.50 342.9
False 100 60*60 0.93 2.8

True 50 20*60 0.50 2032.0
True 50 20*60 0.93 4.7
True 100 60*60 0.50 451.0
True 100 60*60 0.93 2.5

Table 5.4: Average MSE of affinity propagation applied to our dataset

(a) normalised = False, significant places:
extracted = 5, real = 4

(b) normalised = True, significant places:
extracted = 59, real = 4

Figure 5.8: Trajectory of user 005 in our dataset. Result of affinity propagation with
damping = 0.93, applied to stay-points extracted with dist_thres = 100

and time_thres = 3600.
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5.3.4 Finding Significant Locations in a Density-Based Fashion

In section 4.2, we came to the conclusion that density-based clustering techniques might
be the best fit for detecting significant locations. As a prominent example, DBSCAN
presents multiple characteristics which are suitable for our task. Next to its ability to
detect various shapes of clusters as well as noise, the algorithm does not require defining
the number of significant places we are looking for. Also, the scikit-learn library of
Python provides an implementation of DBSCAN, which is why we chose this particular
algorithm within the group of density-based clustering methods.
As in previous sections, we again take a look at the results we obtain from clustering

stay-points based on non-normalised data. Next to the arguments controlling the stay-
point extraction, we need to tune two additional parameters specific to DBSCAN (cf.
section 2.2.4). These arguments are the minimum number of points in a cluster, i.e.
min_points, and radius ε.
Table 5.5 shows the MSE of DBSCAN for an excerpt of different arguments. The first

lines comprise the results obtained without a normalisation of data-points. Revisiting
the proposition of Li et al., let us first examine the best ε and min_points parameters
for dist_thres = 200 and time_thres = 30∗60. Taking ε = 0.0002 andmin_points = 3
leads to a MSE of 1.6. To put this into perspective, the best average error we obtained
of affinity propagation for non-normalised data was 2.8.
The proposed parameters of Li et al. lead, at the same time, to the lowest MSE

within our grid search. Varying the time threshold slightly, as an example, results in a
minimally changed average error of 1.7. This is still higher than the best result achieved
by algorithms with a predefined number of clusters, which is why we subsequently look
at the case of normalised data-points.

normalised dist_thres time_thres min_points ε MSE

False 200 30*60 3 0.0002 1.6
False 200 40*60 3 0.0002 1.7

True 200 30*60 2 0.04 1.7
True 1000 25*60 2 0.04 0.9

Table 5.5: Average MSE of DBSCAN applied to our dataset

Figure 5.9 shows results of applying DBSCAN with parameters from table 5.5 for non-
normalised raw data. On the left-hand side, the predicted number of significant places
does not correspond to the real amount. The image on the right-hand side, however,
shows a correct prediction. When working with non-normalised coordinates, previous
clustering algorithms often encountered issues with trajectories spanning a low overall
distance. Note that in particular the trajectory on the left hand side covers a relatively
small area. Previous algorithms were often unable to find more than one single cluster,
but DBSCAN copes with these kind of discrepancies within our dataset better.
The second part of table 5.5 shows average errors of DBSCAN when applied to stay-

points extracted from normalised data. Distance thresholds are not given in meters in
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(a) User 002, significant places:
extracted = 2, real = 3

(b) User 003, significant places:
extracted = 3, real = 3

Figure 5.9: Trajectories of two users in our dataset. Result of applying DBSCAN to
stay-points extracted with dist_thres = 200 and time_thres = 30 ∗ 60

from non-normalised data-points; min_points = 3, ε = 0.0002

this case. Nevertheless, we can examine how the MSE is influenced by the normalisation
of data-points. Taking a distance threshold of 200, and a time threshold of 30*60, we can
again achieve an error of 1.7 with min_points = 2 and ε = 0.04. Increasing the distance
threshold to 1000 and slightly decreasing the time threshold, can push the MSE below
1. More precisely, with dist_thres = 1000, time_thres = 25 ∗ 60, min_points = 2 and
ε = 0.04 we obtain a MSE of 0.9. This average error of DBSCAN therefore outperforms
all of the previously discussed algorithms.
Figure 5.10 illustrates how detected significant places could look like when applying

DBSCAN for the task. The shown results are obtained with the parameters leading to
the smallest MSE in table 5.5. For the collected dataset, almost half of our predictions
match the corresponding real number of significant places. The upper images here
show two exemplary trajectories for which this holds. The lower two images illustrate
trajectories of users for which we do not obtain the correct prediction; however, except
for one case, the difference between real and estimated number of significant locations
is exactly one.

Wrong predictions made by DBSCAN can have a variety of reasons. Parameters might
be fitting for a certain number of users within a dataset, while being sub-optimal for
others. The normalisation of raw data prior to the extraction of stay-points simplifies
the task of finding suitable parameters for multiple users, but does not resolve the
issue completely. In addition to that, one also needs to consider the relatively short
period of time in which our dataset was collected. Some significant places might not be
detected whenever a participant could not visit the location frequently enough during
the recording period. This limitation however, gives us room for future work with a
more comprehensive dataset (cf. section 6.1).
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(a) User 000, significant places:
extracted = 5, real = 5

(b) User 002, significant places:
extracted = 3, real = 3

(c) User 007, significant places:
extracted = 2, real = 1

(d) User 008, significant places:
extracted = 5, real = 3

Figure 5.10: Trajectories of various users in our dataset. Result of applying DBSCAN
to stay-points extracted with dist_thres = 1000 and time_thres = 25 ∗ 60

from normalised data-points; min_points = 2, ε = 0.04
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5.3.5 Finding Significant Locations Based on Raw Data

So far, we only performed the detection of significant places based on previously extrac-
ted stay-points. This should primarily avoid issues when trying to discover buildings Li
et al. In this section however, we want to take a look at the performance of grouping
raw location data to form significant places. Due to a high amount of noise within raw
data, we apply DBSCAN once more.

The two arguments we subsequently consider, are min_points and ε of DBSCAN.
Distance and time thresholds do not need to be considered due to the lack of stay-point
extraction. However, we still want to examine whether normalising the coordinates of a
data-point has an impact on the MSE of DBSCAN in this setting.

Figure 5.11 shows two trajectories within our dataset. The given result is obtained
by applying DBSCAN, with min_points = 60 and ε = 0.0005, to non-normalised data.
The image to the left shows a correct prediction of the amount of significant places. On
the other hand, the right image illustrates a prediction where the number of clusters does
not align with the ground truth. The trajectory on the right-hand side originates from
a user that tends to travel smaller distances in a day-to-day life. This is also indicated
by the labelled axes of the two plots. Applying DBSCAN to raw, non-normalised, data,
once more encounters difficulties with diverging distances of different users. Radius ε is
equal for both users represented in the plot, which fits for the left-hand side. As the
data-points within the right image are much denser, the radius covers the entire area,
and every point is part of the same cluster.

(a) User 006, significant places:
extracted = 4, real = 4

(b) User 008, significant places:
extracted = 1, real = 3

Figure 5.11: Trajectories of two users in our dataset. Result of applying DBSCAN with
min_points = 2 and ε = 0.0005 to raw, not-normalised data-points.

Table 5.6 shows the MSE achieved by the parameters used for the results displayed
in Figure 5.11. While it represents the minimum error over all considered parameters,
it remains relatively high when compared to other clustering approaches. The second
row in the table points out, that normalising the coordinates prior to the detection of
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significant places can reduce the MSE significantly. Using a number of minimum points
min_points = 60, and ε = 0.01, achieves an error, averaged over all users within the
dataset, of 2.1. This is higher than the MSE we achieved when applying DBSCAN on
stay-points without prior normalisation.

normalised min_points ε MSE

False 60 0.0005 5.2

True 60 0.01 2.1

Table 5.6: Average MSE of DBSCAN applied to our raw dataset

Despite the relatively low MSE we achieve when clustering normalised data-points,
only one number of significant places is predicted correctly by DBSCAN. Figure 5.12
shows results of applying the parameters from table 5.6. The image on the left-hand side
illustrates the trajectory, in which the predicted number of significant places corresponds
to the ground truth. Predictions concerning the remaining trajectories tend to exhibit
a difference of one or two significant locations. One trajectory, for which the predicted
number of significant places is lower than the actual amount, is given in the image to
the right.

(a) User 002, significant places:
extracted = 3, real = 3

(b) User 005, significant places:
extracted = 2, real = 4

Figure 5.12: Trajectories of two users in our dataset. Result of applying DBSCAN to
raw, normalised, data-points; min_points = 60, ε = 0.01

5.3.6 Predicting Locations of Significant Places

In previous experiments we compared various approaches by means of how well they
predict the real number of significant places. If we solely consider significant locations
such as abstract location labels, this might be a sufficient measure. As long as the exact
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coordinates of a significant place is not relevant, the main goal is to detect the correct
amount, and map an extracted clusterx to any abstract location label.
Working with abstract significant places is a restriction, in particular when reasoning

about the precise coordinates of current whereabouts of a user. As we perform the
prediction of next places with the help of a HMM, however, this restriction is reasonable.
HMMs exhibit a discrete state-space, meaning that we can only predict a finite set of
locations. Nevertheless, every location label corresponds to actual coordinates in the
world, differing from user to user. Next to examining the amount of predicted significant
places, we take a look at the quality of our predictions, i.e. how close they are to the
real coordinates of the significant place.

The often diverging number of real and predicted significant places complicates quanti-
fying the quality of our predictions. Figures 5.13 and 5.14 illustrate the mean coordinate
of predicted and real significant locations of all ten participants in our dataset. The first
images, i.e. in Figure 5.13, show trajectories with an accurate prediction of the amount
of significant locations. The parameters leading to subsequent results are described in
section 5.3.4.

Despite a correct number of significant places, the locations do not coincide in all
cases. For only one user, we manage to predict the placement of all significant places
within close proximity, as is depicted in Figure 5.13. The remaining trajectories reveal
some issues with our predictions. Whenever a real significant location has its mean
coordinate at a position outside of the trajectory, we fail with our prediction. Possible
reasons for this to occur are imprecise sensor measurements, or annotation errors. The
mean coordinates of our predicted significant places on the other hand, tend to be
placed close to the points that make up a trajectory. A second problem is due to real
significant locations that are very close to each other. Whenever they lie within the
radius we defined for extracting significant places with DBSCAN, we fail to distinguish
between them.

Figure 5.14 on the other hand shows trajectories for which we can not predict the
correct number of significant locations. Also for these results, we use the most fitting
arguments determined in section 5.3.4. The upper left image illustrates one possible
reason, why a different number of significant places is detected. Once more, two loca-
tions significant to a user lie within such close range, that they can not be distinguished
by DBSCAN. The upper right image shows a similar case, in which all real signific-
ant places are located in close proximity. A second notable factor is illustrated in the
two images on the second row. All real significant locations overlap with our predic-
tions. However, we estimate additional significant places. A possible scenario for this
phenomenon is whenever a user stays at a location for a rather long time, without con-
sidering it significant. The short recording period of the dataset requires a rather low
minimum number of points, defined with the min_points argument of DBSCAN, to
form a significant location. Due to this, places visited irregularly for a longer period of
time can be easily considered meaningful.

In what follows, we want to base the prediction of next locations on the extracted
significant places. For this process, we will use the arguments we determined in section
5.3.4, since they minimise the MSE over all examined clustering algorithms. Even though
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Figure 5.13: Trajectories of users with a correctly predicted number of significant
places. Real and estimated significant locations are visualised and

confronted
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Figure 5.14: Trajectories of users with an in-correctly predicted number of significant
places. Real and estimated significant locations are visualised and

confronted
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the number of detected significant places is not the only factor to be considered, it
is crucial for our experiments. Subsequently, we will also take a closer look at the
Geolife dataset. As it is differently structured and recorded over a longer period of time,
parameters tuned to this dataset would likely look different. However, as we do not have
any sort of ground-truth for our specific task, we have no choice but to use the same
parameters for both datasets.

5.4 Predicting Next Locations

In section 4.3, we saw that HMMs allow us to predict next places. Due to the discrete
state space of a HMM, these predictions originate from a discrete set of possible locations.
After pre-processing real data where we extract stay-points and find significant places
for a person, we have such a set of location labels available. Using significant places as
possible states for our next place prediction model allows us to reason about the future
location of a person. In other words, for every person, we first perform pre-processing in
order to extract locations that are significant to them, before we train a HMM for each
user to be able to reason about their whereabouts.
In this thesis, we look at various kinds of HMMs, as previously stated in section 4.3.

Their performance on the task of next place prediction is then used as the deciding
factor for choosing a final model. While the state space of every HMM consists of the
extracted significant places, including a state for noise, we focus particularly on different
observation spaces. In order to be able to train the HMM for next place prediction
in a supervised way, subsequent experiments use previous pre-processing results as an
approximation of the ground-truth. This also allows us to measure the performance of
our models on the Geolife dataset. For the experiments in 5.3, this was not possible due
to the lack of ground-truth to compare it with.

5.4.1 Different HMM Structures

Before HMMs are trained and their performance can be determined, we take a look at
different HMM structures that will be put to the test. As stated previously, the state-
space coincides for all models that we consider. Figure 5.15 illustrates possible states
of a HMM for next place prediction, which correspond to previously found significant
places and one additional state for noise.

noise loc1 loc2 . . .

Figure 5.15: State space of our HMM. States correspond to previously detected
significant places (cf. section 5.4)
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The second factor that determines the structure of a HMM is the space of possible
observations (cf. section 4.3). In our experiments we compare various discrete obser-
vations, which can be divided into two main topics. The first kind of observations
concerns location information, and corresponds to discrete location labels, which we ob-
tained from the detection of significant places. Secondly, we can incorporate different
temporal factors, namely discrete information about the date and time.

In our experiments, we considered two different approaches to discretise a continuous
date. The first possibility is to extract which day of the week it is, i.e. Monday up
to Sunday. Secondly, with an even coarser granularity, we can differentiate between
weekday and weekend, reducing the number of possible observations regarding the date
to two. Note that people often tend to work within the week, and likely spend more time
at home during weekends, which is why this could still carry a lot of useful information
for the next place prediction model.

Similarly, we consider different granularities for the factor time. The most obvious
choice is to take the exact hour of the day as an observation for our HMM. However,
we can also split the hours of a day into a number of slots, so that we only consider
every two, three, etc. hours. Figure 5.16 illustrates four different splits of a 24 hour day.
Choosing 24 slots is equal to considering every hour of the day by its own; taking two
slots, on the other hand, could be seen as feeding the HMM the information of whether
it is day or night. One single slot, means we that have the same observation for every
hour. In this case, our observations would not carry any information. Whenever 24 is
not divisible by the defined number of slots, we obtain slot sizes that slightly differ, as
is also illustrated in Figure 5.16.

Figure 5.16: Visualisation of splitting the 24 hours of a day
in 24, 12, 5 and 1 slots respectively

Table 5.7 depicts a summary of the different kinds of discrete observations we will
consider. In addition to considering observations containing information about loca-
tion, date or time alone, we can also combine multiple factors, in order to provide more
knowledge for next place prediction. This could be seen as having multiple observation
variables, i.e. one for every kind of information. Or, if we continue to assume a single ob-
servation variable, its value now consists of two or more concrete assignments as opposed
to one assignment before. As an example, one particular observation at time t can be
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o(t) = home, as well as o(t) = home on monday or o(t) = home on monday at ten o′clock.
Note here, that we can also consider a total of 24 different numbers of slots as possible
observations.

location date time

location label day of the week hour (slot) of the day
weekday / weekend

Table 5.7: Possible discrete observations for our HMM

5.4.2 Comparing HMMs with Cross Validation

Once we know the structure of the HMMs we want to train, we need to get an idea of how
well each one of them performs for the task of next place prediction. In section 2.3.10
we introduced the basic concepts of performance evaluation for HMMs. Particularly due
to the small size of the dataset that was collected by us, we apply cross validation, as
discussed in section 4.3.3.
Prior to the application of cross validation, the datasets have to be prepared. More

precisely, we divide the data into multiple sequences, each containing records of one
particular day (cf. section 4.3.3). The low amount of data per user restrains us from
also considering longer sequences, such as weeks. To maintain a temporal order, the
sequences of days, as opposed to the samples within a day, are shuffled, before they are
split into k = 4 folds. Despite the restriction of using users which have at least seven
recorded days of data available, the total number of days is very limited for various users
in both datasets. Due to this, we chose not to keep apart a test set for assessing the
quality of our model, and instead focus on finding the most suitable out of the different
models we consider.
Our final goal is to maximise the accuracy, averaged over all users within a dataset.

The accuracy is the relative number of correct predictions, i.e.

accuracy =
number of correct predictions

number of total predictions
. (5.2)

In what follows, we will first look at the validation accuracy of different models on our
collected dataset, followed by the experiments with the Geolife dataset.

5.4.3 Prediction Accuracy: Own Dataset (GPS only)

In this section, we compare the prediction accuracy of the different models suggested in
section 5.4.1, on the dataset collected by us. Subsequent experiments for our dataset
consist of two parts. As described in section 5.1.2, we recorded network data in addition
to GPS data. First, we look at the results obtained by using GPS data only. We did not
consider network data by itself, since it is too sparse and was not used by all participants.
The second part of the experiments will use GPS and network data combined.
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Table 5.8 contains the validation accuracy of multiple next place prediction HMMs,
trained on our dataset with GPS data only. The left column lists observations that were
fed to the different models, while the middle column shows the estimated prediction
accuracies. Note here, that, regardless of what we observe, we only predict the likeliest
next significant place. The column to the right in table 5.8 contains the standard de-
viation of the prediction accuracies, describing how the accuracy varies among different
users. The number in parentheses specifies how many slots per day were considered (cf.
Figure 5.16).

High validation accuracies in table 5.8 could be misleading. To get a better idea of
how good different models actually are, we provide two basic baselines for the prediction
accuracy. First, we consider a relatively simple model, that always predicts the same
next place, namely noise. Since people do not necessarily have to spend the majority
of their time at a significant place, a lot of observations are classified as noise. By
always predicting noise as a next place, we get an accuracy of 0.85. This means that
the majority of points is labelled as noise. On the one hand, this suggests that the
accuracy as introduced in section 5.4.2 is not the ideal performance measure, as it does
not consider this imbalance regarding different labels. However, due to the challenge
of extending balanced accuracy to a multi-class prediction task, as well as the lack of
valid predictions of our model as soon as new observations are encountered, we chose to
continue using the accuracy as defined previously. On the other hand, the high amount
of noise also gives rise to the question, whether or not this label has been assigned too
frequently in the pre-processing routine. While we could reduce the overall amount of
noise by introducing additional clusters (cf. [19]), this likely remains an issue as long as
these clusters outweigh the clusters of interest, i.e. our significant locations.

model mean accuracy σ

locations 0.958 0.021
days 0.350 0.137
weekday / weekend (ww) 0.344 0.220
slot (1) 0.706 0.167
slot (24) 0.491 0.187

locations + days 0.699 0.240
locations + ww 0.944 0.035
locations + slot (1) 0.958 0.021
locations + slot (24) 0.814 0.125
days + slot (20) 0.492 0.141
ww + slot (24) 0.544 0.140

locations + days + slot (6) 0.743 0.159
locations + ww + slot (1) 0.944 0.035

Table 5.8: Mean prediction accuracies and their standard deviations for our collected
dataset, considering GPS data only
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As our second baseline, we consider how well a HMM performs when taking the input
as its prediction. Using the identity function would be a naive solution for the task of
next place prediction, which is why we want to achieve a higher prediction accuracy with
our advanced HMM. Forwarding observations and using them as next place predictions,
results in a mean accuracy of 0.989, with a standard deviation of 0.001. This means,
that it predicts with a high accuracy for every user within the dataset.
Table 5.8 shows, that one of the simplest models, considering only the location label

of previous time step in order to predict the next location label, reaches the highest
accuracy with 0.958. This is higher than predicting solely noise, but not quite as high
as our second baseline. Using the day of the week as an observation on the other hand
results in a significantly lower accuracy of only 0.35. The information loss due to a much
coarser granularity when only differentiating between weekday or weekend, however, does
not influence the accuracy, now of 0.344, notably.
The best results of taking the time factor exclusively as an observation is achieved by

a slot number of one. We reach a validation accuracy of 0.706, as can be seen in table
5.8. If we think back to how the number of slots within a day is defined (cf. section
5.4.1), this result is striking. If we split the hours within a day into one single slot,
we obtain the same value for every observation we make, therefore not providing any
information at all to the HMM. Splitting the day into 24 slots, on the other hand, lowers
the accuracy to 0.491. The reason for the relatively low accuracies when using 24 slots or
discrete date information, is likely the issue of encountering observations during testing
that were not observed in the training process (cf. section 4.3.3). Whenever these
observations occur during the testing phase, they are treated as a wrong prediction,
as the HMM fails to predict validly. Note that the coarser granularity of weekday vs.
weekend, as opposed to the day of the week, increases the chances for a measurement
for each possible observation value. This might explain, why the accuracy does not drop
significantly compared to using solely which day of the week we observe.
Table 5.8 also depicts the prediction accuracies achieved when combining multiple

kinds of observations within a model. Adding further information to observed location
labels leads to an often significantly reduced accuracy, once more due to a multitude of
observations that are first seen in the validation, as opposed to the training, set. One
example is considering the day of the week, next to location labels. Note here, that while
the day of the week alone performed better than simply differentiating between weekday
and weekend, combining latter with location information actually achieves considerably
better accuracy. The reason for this is the coarser granularity, which reduces the amount
of observation values that are first encountered during the validation step. Considering
location labels and one slot together achieves the same high accuracy as the locations
alone, as we do not actually observe any additional information. On the other hand,
taking locations and the precise hour within a day as an observation, leads to a still re-
latively high next place prediction accuracy of 0.814. Leaving out location information,
and instead combining the date and time factor in our observations, leads to accuracies
of around 0.5. Once more the lower granularity, i.e. considering only weekday or week-
end, influences the result positively, likely as it provides additional information without
leading to too much unseen observations.
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Finally, combining all three kinds of observations, does not lead to any further im-
provements. The highest accuracy we can achieve here is 0.945 with location labels,
observing whether it is a weekday or weekend, and no additional time information due
to a single split of the hours within a day.

It also should be noted, that the standard deviation of all prediction accuracies is
relatively low, in particular for models that achieve a high mean accuracy. In other
words, this means that well-performing models tend to do so for every user from our
dataset.

5.4.4 Prediction Accuracy: Own Dataset (GPS & Network)

After considering GPS data alone in our previous experiments, we now take a look at
how additional network data (cf. section 5.1.2) influences the accuracy of next place
prediction. Table 5.9 summarises the achieved results here.

As for previous experiments, we want to compare our HMM with some baselines. In
particular, it is interesting how the addition of this kind of data influences the perform-
ance of our model, and why it does so. The first factor we looked at in section 5.4.3 was
the accuracy a model achieves when always predicting noise as its next place. In previ-
ous section 5.4.3, this model achieved a rather high accuracy of 0.85, suggesting that our
dataset might consists of too much noise entries. For the dataset that combines GPS
and network data however, the accuracy when predicting solely noise is 0.787. This is
still a high prediction accuracy, as it performs better than a majority of the models we
trained in our experiments. Nevertheless, the additional network data appears to reduce
the noise in our dataset.

The other factor we considered, was the performance of a model that uses its input
as the next place predictions. For previous experiments, this accuracy was as high as
0.989. When adding network information, the accuracy is comparable with 0.987, and
a standard deviation of 0.003. The identity function thus solves our task of next place
prediction with a relatively high accuracy for all users within the dataset, as the low
standard deviation suggests.

As before, the model with location labels in its observation space performs best, and
improves upon the model in the case of considering GPS data alone with an accuracy
of 0.97 and a standard deviation of 0.016. While we perform significantly better with
this model for next place prediction, than if we would predict noise for every future
location, we still cannot outperform our second baseline, i.e. the identity function. Even
though the performance of this model is improved with the addition of network data,
this does not appear to apply to other combinations of observations. The majority of
models now leads to lower prediction accuracies. Observing information regarding the
date alone achieves accuracies significantly lower than 0.5. The information loss due to
a coarser granularity of the sole differentiation between weekday and weekend is clearly
more noticeable compared to previous experiments.
Looking at the performance of a HMM based on hour-slots as observations, once

again a single slot achieves the highest prediction accuracy. The drop from 0.706 in
previous experiments to 0.642 here indicates however, that the additional network data
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model mean accuracy σ

locations 0.970 0.016
days 0.345 0.139
weekday / weekend (ww) 0.295 0.091
slot (1) 0.642 0.120
slot (24) 0.357 0.111

locations + days 0.777 0.160
locations + ww 0.944 0.041
locations + slot (1) 0.970 0.016
locations + slot (24) 0.860 0.092
days + slot (24) 0.442 0.128
ww + slot (24) 0.461 0.100

locations + days + slot (3) 0.777 0.160
locations + ww + slot (1) 0.944 0.041

Table 5.9: Mean prediction accuracies and their standard deviations for our collected
dataset, considering GPS and network data combined

amplifies the importance for meaningful input. Remember that using one slot per day
for observations results in the same observation value for every time step, i.e. providing
no useful information for the model. Adding network data makes it harder to predict
correct next places randomly, i.e. without meaningful input, as the relative amount of
noise is decreased, which we could conclude from our first baseline. Using a model that
observes the precise hour within a day achieves a lower accuracy as opposed to previous
experiments as well. Once more, the low accuracy is likely due to the issue concerning
new, unseen, observations.
When using HMMs with combinations of two or three different kinds of observations,

all models which consider discrete locations once more exhibit significantly higher ac-
curacies than the ones that do not observe them. The results are comparable to the
performances we saw in previous experiments. Again, the highest accuracies are often
achieved by disregarding the hour of the day, i.e. by taking a slot number of one. This
suggests that for our data, wrong predictions due to unseen observations outweigh the
benefits of additional information we would provide to the model.
The standard deviations remain relatively small for the experiments in this section.

As before, the prediction accuracies from different users vary particularly little whenever
we achieve a high overall accuracy.
Comparing the results of training a model with data originating solely from GPS, as

opposed to GPS and network data combined, allows us to reason about the contributions
of the additional data within our dataset. In general, GPS can take relatively long until
enough satellites are found to determine an accurate location, which is why network
data often has a higher sampling rate, i.e. leads to more data-points. The price to pay
is less accurate locations. As stated previously, the decreased accuracy of a model which
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only predicts noise suggests that the network data reduces the relative amount of noise
within our records. In other words, network data tends to contribute a lot of data-points
to significant places within a relatively short time span. This way, it does not necessarily
provide us with observations on unseen days or time stamps, but rather stabilises the
prediction of significant places, due to e.g. more observations of a particular location to
learn from.

5.4.5 Prediction Accuracy: Geolife Dataset

Now that we have covered the experiments on our own dataset, we take a look at the
performance of our models on the Geolife dataset (cf. section 5.1.1). As opposed to our
own dataset, Geolife only provides GPS data for training and testing the HMMs. Due
to the lack of ground-truth for significant locations, we use the same parameters for the
extraction of significant places in both datasets. How this might influence the results of
next place prediction will be discussed in this section.

Before taking a look at the prediction results, we want to determine the two baselines
introduced previously. The first factor we looked at in sections 5.4.3 and 5.4.4 was the
accuracy of predicting noise in every time-step. Previously, the high prediction accuracy
of splitting a day into one single slot, and using this as the only possible observation
value, already suggested that our dataset is highly unbalanced. Predicting noise as a
next place in every time-step for Geolife leads to an accuracy as high as 0.999, which
amplifies this assumption once more.
The second baseline is the prediction accuracy of a model predicting its input. For

previous experiments, we achieved a performance measure of 0.989. When using the
input as next place prediction for the Geolife dataset on the other hand, we reach an
accuracy of 0.999. For both of the two baselines, the standard deviation is close to 0.
Table 5.10 summarises the prediction accuracies of the models we introduced in sec-

tion 5.4.1. However, this time we tested the HMMs for next place prediction on the
Geolife dataset. As for all other experiments, the model that only uses location labels
as observations performs best for the task. With an accuracy of 0.948 it is comparable
to previous results, especially when considering solely the GPS data of our own dataset.
However, this final model does not predict as much next locations correctly as a HMM
that would learn the identity function, or as the model that predicts noise in every
time-step.
Using date-related observations alone achieves a relatively low prediction accuracy,

similar to what we found previously. The discrepancy of the results between the two
granularities of our observations is again relatively small. While the higher accuracy is
now achieved with the coarser granularity, i.e. the differentiation between weekday and
weekend, the increased standard deviation suggests that this level of abstraction might
be suited better only for a fraction of the users represented in the Geolife dataset.
Also for the previous dataset, choosing a slot number of one, and therefore having a

single observation value as the only input, results in a high accuracy. For the Geolife
dataset, we raise the performance from an accuracy of 0.706 for our dataset, to 0.828.
This gives an indication that what we observe with our trained model does not influence
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model mean accuracy σ

locations 0.948 0.105
days 0.350 0.222
weekday / weekend (ww) 0.362 0.325
slot (1) 0.828 0.174
slot (24) 0.428 0.197

locations + days 0.765 0.230
locations + ww 0.907 0.146
locations + slot (1) 0.948 0.105
locations + slot (24) 0.775 0.201
days + slot (24) 0.478 0.170
ww + slot (24) 0.463 0.182

locations + days + slot (4) 0.771 0.220
locations + ww + slot (1) 0.907 0.146

Table 5.10: Mean prediction accuracies and their standard deviations for the Geolife
dataset

the output significantly. In other words, our model often manages to correctly predict
the next location of a user, despite the model not knowing which day of the week or
time of the day it is, and also without information on previous whereabouts. This could
mean that there are not a lot of different places to predict for a user, or that we simply
have too much noise in our data-points.
Combining multiple kinds of observations in a model for next place prediction, influ-

ences the performance on Geolife similarly to what we saw in previous sections. Giving
the HMM information about the current or past whereabouts seems to be a prerequis-
ite to obtain prediction accuracies significantly over 0.5. As in previous experiments,
the standard deviation of the achieved prediction accuracies suggest, that for models
with a high overall accuracy, the performance between different users varies the least.
Compared to the results we achieved with our dataset, a slight increase of the standard
deviations is noticeable.
Achieving a high prediction accuracy with predicting the same next place, i.e. noise,

for every time-step, does not necessarily mean that our final model is unsuited for the
task. Once more, it should be noted, that the accuracy does not consider the imbalance
within our data. While a different performance measure could give us a better idea of
how various HMMs perform for the task, invalid predictions of models after encountering
new observations complicate their usage. In addition to that, we should consider whether
the annotations, resulting from our pre-processing routine, are fitting representations of
the reality. For the Geolife dataset in particular, these results suggest that adopting
the parameters found for our dataset has likely not been a suitable choice. The lack
of ground-truth however, complicates finding proper parameters for the pre-processing
step considerably.
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Processing location traces has various applications and motivations, reaching from con-
tent improvements for context-aware systems (cf. [12]) to aiding in the authentication
procedure of users (cf. [19]). In this thesis, we trained a HMM for the task of next place
prediction. The performance of models is compared based on two different datasets. The
first one is the existing Geolife GPS trajectory dataset by Microsoft [33]. As a second
source of data, we collected our own dataset with the help of a mobile application for
Android and NFC tags. In addition to the GPS data that is also present in the Geolife
dataset, we recorded location data based on WiFi and cell towers, if available.
The discrete state space of HMMs allows us to predict one out of a discrete set of

possible future locations. However, the continuous nature of raw location data such
as coordinates, requires us to pre-process the data prior to the prediction. In order to
discretise continuous coordinates, we used the approach of Li et al. to extract stay-points
in a first step [16]. These are then clustered to form significant locations (cf. [30]).

A lot of common clustering algorithms encounter issues when grouping spatial data for
our task. In particular, we found the need to fix a number of clusters and a lack of support
for noise to be troublesome for detecting significant locations. In our experiments, we
therefore used the DBSCAN algorithm, and tested its performance on our dataset which
comes with a ground-truth. The density-based clustering approach is designed with a
focus on spatial data, and achieves the closest approximation of the real number of
significant places out of multiple clustering algorithms. Different experiments applying
DBSCAN with differently pre-processed data, emphasise the importance of a stay-point
extraction, and the positive influence on normalisation.

After pre-processing, we can use the set of extracted significant places as the state
space of our model for next place prediction. More precisely, the HMM we trained has
one state for every significant place, and an additional state for noise, i.e. for all the data
that has not been assigned to any significant location. The second factor defining the
structure of our HMM is the observation space, i.e. the set of values that can be observed
in the environment. The final model for next place prediction has an observation space
corresponding to the result of our pre-processing step, which means we infer the next
most probable location of a person based on their latest whereabouts.

The averaged validation accuracy of our final HMM for next place prediction, i.e.
the relative number of correct predictions, is higher than 0.95 for all datasets in our
experiments. Concretely, we looked at the Geolife dataset, as well as our collected
dataset in two variations. One variation considered only the GPS data within our
dataset, whereas the other variant consisted of both the GPS data and the location
information derived from the network. Comparing the results for these two variants,
we find that the additional information from the network helps to stabilise significant
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places and reduces the relative amount of noise. At the same time, it does not appear
to provide a lot of additional information over GPS, e.g. of days or points in time we
do not know a lot about. Treating network data separately, e.g. in a HMM specifically
trained on it, could provide better insights of its advantages and disadvantages. This,
however, would require a higher amount of such kind of data.
Despite the high accuracy of our model for the task of next place prediction, we also

discovered a high presence of noise in our desired predictions. In other words, a model
that predicts noise as every future location works as well as, or even better than our next
place prediction model. This leads to the conclusion that better data might be necessary
to get meaningful results. In particular, our collected dataset should be expanded to
contain more users and longer recording sequences, so that we can create a benchmark
that allows to compare various methods.

6.1 Future Work

In the next place prediction approach presented in this thesis we still work with a lot
of limitations. The main motivation behind our work is to have next place predictions
of a user as a baseline for comparing it with real sensor measurements, which only have
a limited confidence in the current location of a user. This would allow us to reason
about the actual current location of a user, or even the likelihood of this person being
currently impersonated.
However, so far we only looked at the typical, day-to-day routine of a person. Whenever

this person does something unexpected or irregular, e.g. travelling to a foreign country
during holidays, we do not want our system to fail. Instead, we need to consider how
likely new, unexpected transitions are, e.g. by looking at factors such as the time it
would take the legit user to reach the new destination.
Similarly, the significant places of a person are not necessarily immutable. As a

concrete example, we can think of moving to another residence, therefore changing the
significant place that represents home. The most straightforward way to treat this would
be to re-start the training process of our model, including the pre-processing of the data
of our user. Nevertheless, future work could also consider to learn incrementally, e.g.
not only using new observations for reasoning, but also for further training of the next
place prediction model (cf. [14]).
New observations are also sources for trouble when training and testing our model, as

a discrete observation space in a HMM does not support previously unseen observations
natively. Whenever we observed something new in our implementation, it is treated
as a wrong next place prediction. However, we also mentioned that a more advanced
approach to circumvent this issue is to e.g. assign observation probabilities larger than
zero to unseen observations (cf. [19]). Another possible alternative to consider for the
future would be to look for a more incremental approach to learn HMM parameters, as
a way to incorporate new observations directly into the active learning process.
We also want to emphasise the importance of working on quality as well as quantity of

the data for next place prediction in the future. While larger, existing datasets often do
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not provide information such as ground-truth for the discretisation process, our collected
dataset still exhibits a lot of limitations primarily due to its size. A longer time span
of recording location data would e.g. simplify the process of finding significant places
while making it more robust at the same time. More precisely, in order to find stay-point
clusters, a higher minimum number of points could be used, therefore reducing significant
places that correspond to arbitrary locations without deeper significance. Additionally,
a higher number of recorded days would allow to use a test set for a more unbiased
performance estimation of a next place prediction model.

In the future it might be also interesting to look at a broader range of sensors that
allow us to record location data. In particular, it could be explored whether we gain
information when we train different models for different sensors, as opposed to using
all data to train the same model, as we tried in our experiments. In order to obtain a
final next place prediction, the models representing the prediction of a particular sensor
could be combined based on the confidence in the sensors, e.g. the precision of their
measurements.

In our experiments, we could include even more measurements in our data. As an
example, also the altitude of a location point could be considered in the future. This
would be interesting in particular if a person has significant places that can only be
differentiated based on the altitude of their location. Furthermore, also the precision of
a recorded location could be of interest. It could, for example, be used to compute a
level of confidence in the measurements of a sensor, as suggested when using multiple
different sensors for the task of next place prediction.

Finally, differently structured HMMs or completely different models that e.g. allow
predicting specific coordinates could be considered for the prediction of future locations.
While ANNs, as an example, would make the pre-processing step for a discretisation of
location data redundant, models such as the HMM might be preferable in a security-
based application of next place prediction, as the base of decisions should be interpretable
in this setting. In addition to that, the pre-processing step itself could be adapted. So
far, we only have one state for noise. However, multiple additional states could be
taken into account, as e.g. proposed by Mahbub and Chellappa [19]. Examples would
be states for unknown data samples, or a transition state for locations a person only
visited during transit. Also, continuous as opposed to discrete observations could be
considered in the future.
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Acronyms

ANN Artificial Neural Network.

BN Bayesian Network.

CDR Call Detail Record.

CPD Conditional Probability Distribution.

DBN Dynamic Bayesian Network.

DBSCAN Density Based Spatial Clustering of Applications with Noise.

GMM Gaussian Mixture Model.

GPS Global Positioning System.

HMM Hidden Markov Model.

kNN K-Nearest Neighbours.

MCMC Markov Chain Monte Carlo.

MMC Mobility Markov Chain.

MSE Mean Squared Error.

NFC Near Field Communication.

NN Neural Network.

RNN Recurrent Neural Network.

RSS Received Signal Strength.

71





Bibliography

[1] Sherif Akoush and Ahmed Sameh. ‘Mobile User Movement Prediction using Bayesian
Learning for Neural Networks’. In: Proceedings of the 3rd ACM International Con-
ference on Wireless Communications and Mobile Computing. ACM. 2007, pp. 191–
196.

[2] Theodore Anagnostopoulos, Christos Anagnostopoulos and Stathes Hadjiefthymi-
ades. ‘Efficient Location Prediction in Mobile Cellular Networks’. In: International
Journal of Wireless Information Networks 19.2 (2012), pp. 97–111.

[3] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

[4] Jesús Bobadilla et al. ‘Recommender Systems Survey’. In: Knowledge-Based Sys-
tems 46 (2013), pp. 109–132.

[5] Yohan Chon et al. ‘Evaluating Mobility Models for Temporal Prediction with
High-Granularity Mobility Data’. In: Proceedings of the 10th IEEE International
Conference on Pervasive Computing and Communications. IEEE. 2012, pp. 206–
212.

[6] Alexandre De Brébisson et al. ‘Artificial Neural Networks applied to Taxi Destin-
ation Prediction’. In: Proceedings of the 2015 International Conference on ECML
PKDD Discovery Challenge. CEUR-WS.org. 2015, pp. 40–51.

[7] Martin Ester et al. ‘A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise.’ In: Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining. Vol. 96. 34. AAAI Press, 1996, pp. 226–
231.

[8] Brendan J Frey and Delbert Dueck. ‘Clustering by Passing Messages between Data
Points’. In: Science 315.5814 (2007), pp. 972–976.

[9] Lex Fridman et al. ‘Active Authentication on Mobile Devices via Stylometry, Ap-
plication Usage, Web Browsing, and GPS Location’. In: IEEE Systems Journal
11.2 (2017), pp. 513–521.

[10] Sébastien Gambs, Marc-Olivier Killijian and Miguel Núñez del Prado Cortez. ‘Next
Place Prediction using Mobility Markov Chains’. In: Proceedings of the 1st ACM
Workshop on Measurement, Privacy, and Mobility. ACM. 2012, p. 3.

[11] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statist-
ical Learning. Springer, 2009.

73



Bibliography

[12] Jeffrey Hightower and Gaetano Borriello. ‘Particle Filters for Location Estimation
in Ubiquitous Computing: A Case Study’. In: Proceedings of the 6th International
Conference on Ubiquitous Computing. Springer. 2004, pp. 88–106.

[13] Sibren Isaacman et al. ‘Identifying Important Places in People’s Lives from Cellular
Network Data’. In: Proceedings of the 9th International Conference on Pervasive
Computing. Springer. 2011, pp. 133–151.

[14] Wael Khreich et al. ‘A Survey of Techniques for Incremental Learning of HMM
Parameters’. In: Information Sciences 197 (2012), pp. 105–130.

[15] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT press, 2009.

[16] Quannan Li et al. ‘Mining User Similarity based on Location History’. In: Pro-
ceedings of the 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM. 2008, p. 34.

[17] Qiujian Lv et al. ‘Spatial and Temporal Mobility Analysis in LTE Mobile Network’.
In: Proceedings of the 2015 IEEE Wireless Communications and Networking Con-
ference. IEEE. 2015, pp. 795–800.

[18] David JCMacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[19] Upal Mahbub and Rama Chellappa. ‘PATH: Person Authentication using Trace
Histories’. In: Proceedings of the 7th IEEE Annual Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference. IEEE. 2016, pp. 1–8.

[20] Wesley Mathew, Ruben Raposo and Bruno Martins. ‘Predicting Future Locations
with Hidden Markov Models’. In: Proceedings of the 14th ACM Conference on
Ubiquitous Computing. ACM. 2012, pp. 911–918.

[21] Mendhak. Lightweight GPS Logging Application For Android. https://github.
com/mendhak/gpslogger. 2018.

[22] Navigation National Coordination Office for Space-Based Positioning and Tim-
ing. GPS.GOV GPS Educational Poster. 2016. url: https://www.gps.gov/
multimedia/poster/ (visited on 08/08/2018).

[23] F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[24] Andrei D Polyanin and Alexander V Manzhirov. Handbook of Mathematics for
Engineers and Scientists. Chapman and Hall / CRC, 2006.

[25] Yuanyuan Qiao et al. ‘A Hybrid Markov-based Model for Human Mobility Predic-
tion’. In: Neurocomputing 278 (2018), pp. 99–109.

[26] Lawrence R Rabiner. ‘A Tutorial on Hidden Markov Models and Selected Applic-
ations in Speech Recognition’. In: Proceedings of the IEEE 77.2 (1989), pp. 257–
286.

74

https://github.com/mendhak/gpslogger
https://github.com/mendhak/gpslogger
https://www.gps.gov/multimedia/poster/
https://www.gps.gov/multimedia/poster/


Bibliography

[27] Lawrence R Rabiner and Biing-Hwang Juang. ‘An Introduction to Hidden Markov
Models’. In: IEEE ASSP Magazine 3.1 (1986), pp. 4–16.

[28] Jacob Schreiber. ‘Pomegranate: Fast and Flexible Probabilistic Modeling in Py-
thon’. In: The Journal of Machine Learning Research 18.1 (2017), pp. 5992–5997.

[29] Dongkuan Xu and Yingjie Tian. ‘A Comprehensive Survey of Clustering Algorithms’.
In: Annals of Data Science 2.2 (2015), pp. 165–193.

[30] Jie Yang et al. ‘Predicting Next Location using a Variable Order Markov Model’.
In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Geo-
Streaming. ACM. 2014, pp. 37–42.

[31] Yingxiang Yang et al. ‘Mobility Sequence Extraction and Labeling Using Sparse
Cell Phone Data.’ In: Proceedings of the 30th AAAI Conference on Artificial In-
telligence. AAAI. 2016, pp. 4276–4277.

[32] Josh Jia-Ching Ying et al. ‘Semantic Trajectory Mining for Location Prediction’.
In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems. ACM. 2011, pp. 34–43.

[33] Yu Zheng et al. Geolife GPS Trajectory Dataset - User Guide. July 2011. url:
https://www.microsoft.com/en-us/research/publication/geolife-gps-
trajectory-dataset-user-guide/.

[34] Changqing Zhou et al. ‘Discovering Personally Meaningful Places: An Interactive
Clustering Approach’. In: ACM Transactions on Information Systems 25.3 (2007),
p. 12.

[35] Mu Zhou et al. ‘SCaNME: Location Tracking System in Large-Scale Campus Wi-Fi
Environment using Unlabeled Mobility Map’. In: Expert Systems with Applications
41.7 (2014), pp. 3429–3443.

75

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/




Katharina Prinz

Personal
Birthplace Steyr, Austria Birthday 23-07-1994

Marital
Status

Single Nationality Austrian

Education
2016–now Master’s degree, Johannes Kepler University, Linz, Austria.

Computer Science - Computational Engineering
2013–2016 Bachelor of Science, Johannes Kepler University, Linz, Austria, mit

Auszeichnung bestanden.
Informatics

2008–2013 High School, Höhere Bundeslehranstalt für Wirtschaftliche Berufe,
Steyr, Austria, mit Auszeichnung bestanden.
Health Management

Working Experience
Relevant Student Jobs

2017 / 2018 Student Employee Institute of Networks and Security, INS Insti-
tute at JKU, Linz.
Working on my thesis

2017 Tutor Computer Graphics Institute, CG Institute at JKU, Linz.
Tutor for Computer Graphics labs

2016 / 2017 Tutor Institute of System Software, SSW Institute at JKU, Linz.
Tutor for Compiler Construction class

2016 Student Employee Institute of System Software, SSW Institute at
JKU, Linz.
Working on Inline Assembly support for Sulong

Miscellaneous Jobs
summer 2016

2015
2014

Office Employee, Red Cross, Steyr.
Holiday replacement

summer 2011 Intern, Klinikum Bad Hall, Bad Hall.
Three-month internship as part of my high school education

Q prinz.katharinamaria@gmail.com 1/2



Languages
German Native
English Advanced or upper intermediate Cambridge English: Advanced (CAE)
Italian Elementary or pre-intermediate Third foreign language in high school
Dutch Pre-intermediate Learning by doing
French Beginner Basic course

Q prinz.katharinamaria@gmail.com 2/2



Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not used
other than the sources indicated, and that all direct and indirect sources are acknow-
ledged as references.

This printed thesis is identical with the electronic version submitted.

Linz, February 2019 Katharina Prinz




	Introduction
	Motivation
	Outline

	Background
	The Spherical Coordinate System
	The Global Positioning System
	Processing Geographic Coordinates

	Clustering
	Combinatorial Clustering
	Distribution-Based Clustering
	Hierarchical Clustering
	Density-Based Clustering
	Further Developments in Cluster Analysis
	Hard vs. Soft Clustering

	Hidden Markov Models
	Notation
	Probabilities
	Bayesian Models
	Temporal Models
	Dynamic Bayesian Networks
	The Markov Property
	The Hidden Markov Model
	Common Inference Tasks
	Learning HMM Parameters with Expectation-Maximisation
	Evaluating the Learning Performance


	Related Work
	Extraction of Stay-Points and Significant Locations
	Next Place Prediction
	Markov Models
	Artificial Neural Networks
	Other Methods


	Location Prediction
	Extracting Stay-Points
	The Implementation

	Finding Significant Locations
	Choosing a Clustering Algorithm
	Applying DBSCAN for Significant Location Detection

	Predicting Next Locations
	The HMM Structure
	Learning HMM Parameters and Next Place Prediction
	Implementation and Choosing the Final Model


	Experiments
	The Datasets
	The Geolife GPS Trajectory Dataset
	The Collected Dataset

	Pre-Processing: Extracting Stay-Points
	Pre-Processing: Finding Significant Locations
	Finding a Predefined Number of Stay-Point Clusters
	Finding Significant Locations with GMMs
	Finding Significant Locations with Affinity Propagation
	Finding Significant Locations in a Density-Based Fashion
	Finding Significant Locations Based on Raw Data
	Predicting Locations of Significant Places

	Predicting Next Locations
	Different HMM Structures
	Comparing HMMs with Cross Validation
	Prediction Accuracy: Own Dataset (GPS only)
	Prediction Accuracy: Own Dataset (GPS & Network)
	Prediction Accuracy: Geolife Dataset


	Summary and Conclusion
	Future Work


