
Submitted by
Bernhard Gründling,
BSc

Submitted at
Institute of Networks
and Security

Supervisor
Univ.-Prof. Dr.
René Mayrhofer

October 2020

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

App-based (Im)plausible
Deniability for Android

Master Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

Acknowledgments

I would like to thank my supervisor, Prof. Dr. René Mayrhofer, for his highly
motivating guidance and all the great opportunities he offered for discussions. I
would also like to thank his colleagues at Google – Bram Bonné and Eran Messeri
– who took the time to answer my questions and provided interesting insights.
Special thanks go to my friend and fellow student, Konstantin Hartl, for being the
best study partner I could have asked for.
Finally, I would like to express my gratitude and appreciation for all the support I
have received from my friends and family throughout the years.

i

Abstract

Confidentiality of data stored on mobile devices depends on one critical security
boundary in case of physical access, the device’s lockscreen. If an adversary is able
to satisfy this lockscreen challenge, either through coercion (e.g. border control or
customs check) or due to their close relationship to the victim (e.g. intimate partner
abuse), private data is no longer protected.
Therefore, a solution is necessary that renders secrets not only inaccessible, but
allows to plausibly deny their sole existence. This thesis proposes an app-based
system that hides sensitive apps within Android’s work profile, with a strong focus
on usability. It introduces a lockdown mode that can be triggered inconspicuously
from the device’s lockscreen by entering a wrong PIN for example. Usability, security
and current limitations of this approach are analyzed in detail.

ii

Kurzfassung

Die Vertraulichkeit von Daten auf Mobilgeräten hängt im Falle eines physischen
Zugriffs von einer kritischen Sicherheitsgrenze ab, dem Sperrbildschirm des Geräts.
Wenn ein Angreifer in der Lage ist, das Gerät zu entsperren, entweder durch Zwang
(z.B. Grenz- oder Zollkontrollen) oder aufgrund seiner engen Beziehung zum Opfer
(z.B. Missbrauch durch Partner), sind private Daten nicht mehr geschützt.
Daher ist eine Lösung notwendig, die Geheimnisse nicht nur unzugänglich macht,
sondern es auch ermöglicht sogar deren Existenz glaubhaft abzustreiten. In dieser
Arbeit wird ein App-basiertes System vorgeschlagen, das vertrauliche Apps im Ar-
beitsprofil von Android verbirgt, wobei ein Schwerpunkt auf Benutzerfreundlichkeit
gelegt wurde. Es wird ein Sperrmodus eingeführt, der über den Sperrbildschirm
des Geräts unauffällig ausgelöst werden kann, indem beispielsweise eine falsche
PIN eingegeben wird. Benutzerfreundlichkeit, Sicherheit und aktuelle Limitationen
dieses Ansatzes werden detailliert analysiert.

iii

Contents

1 Introduction 2
1.1 Motivation . 3
1.2 Proposal . 4
1.3 Task and Scope . 4
1.4 Outline of Contents . 5

2 Theory 7
2.1 Definitions . 7

2.1.1 Steganography . 7
2.1.2 Cryptography . 7
2.1.3 The Principle of Open Design 7
2.1.4 Plausible Deniability . 8

2.2 The Android Operating System . 11
2.2.1 Authentication . 11
2.2.2 Isolation Layers . 11
2.2.3 Device Policy Controller . 13
2.2.4 Android Debug Bridge . 13

2.3 Threat Model and Assumptions . 13
2.3.1 Threat Model . 14
2.3.2 Assumptions . 14

2.4 Requirements . 16
2.4.1 Security . 16
2.4.2 Plausibility . 16
2.4.3 Usability . 17

2.5 Implementation Options . 17
2.5.1 Autonomous Encryption App 17
2.5.2 Virtual Container App . 18
2.5.3 Device Policy Controller App 18
2.5.4 Custom Firmware . 20

2.6 Evaluation of Implementation Options 20
2.6.1 Questions . 20
2.6.2 Results . 22

3 Implementation 25
3.1 General Architecture . 25
3.2 Setup . 28
3.3 User Introduction . 29
3.4 Management . 30

iv

3.4.1 Managing Apps . 30
3.4.2 In-App Trigger Buttons . 31
3.4.3 Settings . 31

3.5 Lockdown & Wipe . 32
3.5.1 Triggers . 32
3.5.2 Actions . 32

3.6 Lockdown Recovery & Custom Lockscreen 35
3.6.1 Implementation Experiments 36
3.6.2 Current Implementation: Invisible Pattern Unlock 38
3.6.3 Recovery Actions . 40

4 Usage 42
4.1 Installation . 42
4.2 Setup . 43
4.3 Introduction . 44
4.4 Management . 47
4.5 Lockdown Recovery . 49

5 Evaluation 51
5.1 Security & Plausibility Analysis . 51

5.1.1 Key eviction . 51
5.1.2 Forensic Analysis . 52
5.1.3 Security States . 58
5.1.4 Plausible Deniability Effectiveness 60
5.1.5 Adversary Simulation . 60

5.2 Usability Study . 61
5.2.1 Pre-Test Questionnaire . 61
5.2.2 Scenarios and Tasks . 62
5.2.3 Results . 64

6 Related Work 66
6.1 Cryptographic Schemes . 66

6.1.1 TrueCrypt . 66
6.2 Approaches on Mobile OS . 67

6.2.1 Customized AOSP . 68
6.2.2 Mobile Apps . 69

7 Future Work and Summary 71
7.1 Future Work . 71

7.1.1 Improving the App . 71
7.1.2 Modifying AOSP . 73

7.2 Summary . 74

A Appendix 77

v

LIST OF FIGURES LIST OF FIGURES vi

List of Figures

2.1 Android architecture: layers of isolation [19] 12
2.2 Visual representation of results . 23

3.1 MainActivity launch flow . 26
3.2 Due Process’s packages and classes 27
3.3 Effect of hiding specific content provider packages in the Files app 34

4.1 Setup UI flow . 43
4.2 The first two intro slides . 44
4.3 Slides explaining lockdown . 45
4.4 Slide explaining recovery from lockdown 45
4.5 Overlay permission granting flow 46
4.6 Secret lockscreen setup flow . 46
4.7 Final slide and first time secret lockscreen 47
4.8 The three main screens . 48
4.9 The rest of available settings . 49

5.1 Effect of hiding all work apps: Launcher section disappears. . . . 53
5.2 UI dump with Android Device Monitor 57
5.3 Diagram of standard security states 58
5.4 Diagram of security states with Due Process 59

6.1 Standard volumes with and without a hidden container [15] 67
6.2 Storage layout of MobiPluto [45] . 68

1
Introduction

The term Plausible Deniability can be traced back to 1948, a year after the CIA was
created and gained popularity in the era of the Cold War [1]. The concept itself
is arguably older. Looser hierarchical structures were created to protect officials
from legal persecution in the event illegal activities by the CIA became public.
Information was withheld from higher-ranking officials, so one could plausibly deny
knowledge of said activities. The US National Security Council once defined covert
operations as ”so planned and executed that any US Government responsibility for
them is not evident to unauthorized persons and that if uncovered the US Government
can plausibly disclaim any responsibility for them” [2].

Generally, plausible deniability enables the person or institution in question to
claim to not have known or done something and there is no way to prove the contrary
[3].

Many implementations of plausible deniability make use of special cryptographic
systems, first proposed in 1997 by Canetti et al. [4]. Deniable encryption enables a
person to hide the fact that they are using cryptography to keep secret data inac-
cessible. The typical situation arises when an adversary has access to the victim’s
ciphertext and forces the person to disclose their encryption key to decrypt the
content. In an ideal deniable encryption system, it would be impossible for the ad-
versary to even prove the existence of ciphertext in the first place [5]. There exist
some applications that implement a less ideal, but still effective approximation of
this idea which do not enable users to completely deny the existence of ciphertext.
The most popular way of handling this situation is by handing out a key that de-
crypts a ciphertext to only harmless or decoy data. With another, really secret key,
the actually private data is decrypted. In such systems, it is impossible to prove the
existence of other keys that decrypt the ciphertext in different ways. The most com-
monly known application might be TrueCrypt, which has been widely used before
its mysterious disappearance [6], and was endorsed by people like Edward Snowden
[7].

The goal of this thesis is to bring plausible deniability to mobile devices in a
usable way. The project aims to protect confidential data in scenarios where users

2

1 Introduction 1.1. Motivation 3

are coerced into unlocking their devices or their device’s lockscreen challenge can be
satisfied by an adversary.

1.1 Motivation

Today’s political developments make new solutions to protect individual privacy
necessary. Already in 2008, the Electronic Frontier Foundation (EFF) published
recommendations on how to securely cross borders with devices holding private data
[8]. Besides more obvious advice like strong passwords, they also explicitly mention
deniable encryption as a very secure solution [8]. In 2017, the EFF published another
article on digital privacy at the border, which shows a five-fold increase in the number
of device searches at the U.S. border in a single year, from 4764 searches in 2015 to
23877 in 2016 [9]. Many of these searches are potential violations of privacy, in which
travelers find themselves in a no-win dilemma [9]. If a traveler does not comply with
the imposed scrutiny, their devices may be seized, they may be subject to further
interrogation or detention and their entry into the country might be refused [9].

We already have reliable solutions for deniable encryption for desktop computers,
but for mobile devices, the options are limited and unattractive for non-technical
users. At the same time, our mobile devices hold plenty of private data. For many
people, mobile devices carry precise documentation of their life, including private
conversations, photos, medical data, banking information, location and movement
histories. Furthermore, many people have special interest in keeping their stored
information private, for example journalists, activists and lawyers. Apart from sen-
sitive professions, there might also be particular demand for privacy for people living
in difficult relationships, where physical access to a device through another malevo-
lent but close person cannot be avoided. In summary, this project tries to mitigate
two particular threats to privacy:

• Border control arbitrariness: Innocent people are asked or forced to unlock
their mobile devices when crossing borders.

• Intimate partner abuse: An abusive partner searches their victim’s mobile
device for certain private data.

The goal is to protect data stored locally on the device, but also apps that are logged
into online accounts.

Plausible deniability is a nuanced topic. There are already some interesting tech-
nical approaches, especially for desktop environments. However, a classic, deniable
encryption application like TrueCrypt is not sufficient, because it would not allow
us to encrypt all the data of an Android application in a user-friendly way and
a dedicated encryption app will always raise suspicion. Therefore, a more holistic

1 Introduction 1.2. Proposal 4

approach is necessary. The idea is to protect apps and data stored locally on the
device in a way that does not interfere with everyday usage.

Applying some form of plausible deniability system is especially interesting for a
group of professions, but can also be a way for individuals to protect their human
right to privacy.

1.2 Proposal

We propose a system that enables an Android device owner to hand their unlocked
or unlockable device to an adversary without disclosing sensitive information. The
obvious solution would be to use encryption, but with encryption alone, we always
have the problem of possible coercion by the adversary. Because of this, the system
should enable us to plausibly deny the existence of sensitive information.

The sensitive information can be inside one or multiple Android apps. These
secret apps may be in a logged-in state (e.g. an email-client, instant-messaging app,
or a browser with session cookies). The device owner chooses which apps should
be protected in advance. For day-to-day usage, the apps are easily accessible via
the app launcher and can be used like any other app. If the device owner runs into
danger of coercion, they can choose an intuitive and inconspicuous method of hiding
the secret apps, like deliberately failing the device’s lockscreen challenge once, which
triggers the system.

The working title of our application will be Due Process, referring to the
constitution of the United States of America, where it states that ”No person shall
[...] be deprived of life, liberty or property, without due process of law.” [10]. The
ambiguity of the word process with its meanings in both law and computer science,
depicts the fundamental motivation for this thesis.

1.3 Task and Scope

The project includes:

• Analysis of implementation options.

• Development of an Android application – ”Due Process” – that uses An-
droid’s existing Device Policy Manager (DPC) interfaces to hide apps and
data.

– Paying special attention to usability.

1 Introduction 1.4. Outline of Contents 5

– Hardening the system by applying restrictive policies to interfere with
forensic analysis.

• Evaluation of the system by performing a forensic analysis.

• Evaluation of the system by conducting a user study with two parts:

– Non-technical and technically adept users are handed an Android device
with the activated system, to find out if the existence of secret data can
be plausibly denied in front of them.

– A group of users with varying levels of technical skills is asked to use the
system as a victim. It should be evaluated if the system is usable in a
day-to-day scenario.

• Documentation of theoretical concepts and results.

1.4 Outline of Contents

In the next chapter, we will introduce theoretical concepts and our analysis of the
threat model and implementation options. After that, we will be able to discuss
the technical implementation details of Due Process in chapter 3. For users of
the mobile application, chapter 4 might be the most interesting, where the usage of
the software is described. The evaluation of the project, including the results of the
user study will be covered in chapter 5. We will also take a look at related work
concerning implementations of plausible deniability in chapter 6. Finally, in chapter
7, a summary is given and we explore what could be achieved in the future.

2
Theory

In this chapter, we focus on the theoretical concepts surrounding the topic. This
includes the desirable features of plausible deniability, the threat model and assump-
tions, the requirements for our implementation and the considered options.

2.1 Definitions

In this section, we provide important definitions relevant for our problem space.

2.1.1 Steganography

Steganography is the art or science of concealing information [11]. It originates
from the Greek word steganos, meaning covered or concealed. Information may be
a message, a file, an image or any other type of data. It usually is hidden inside
another ”container” message.

2.1.2 Cryptography

Cryptography, meaning secret writing, enables secure transmission and storage of
information. By applying cryptography, an adversary is unable to understand what
the content of a transmitted or stored message is [12].

2.1.3 The Principle of Open Design

One of the core principles in information security is called open design: The secu-
rity of a system should not depend on the secrecy of its design [13]. It has to be
assumed that an attacker knows the inner mechanisms of a system. Therefore, the

7

2 Theory 2.1.4 Plausible Deniability 8

system has to depend on user provided information, like keys or passwords, which
can be protected more easily [13]. Open design prohibits the principle of security
through obscurity, where the security of a system depends on the secrecy of its
implementation.

Steganography can be used to hide the sole existence of information, however it
cannot protect its confidentiality once it becomes known where or how the informa-
tion is hidden. In this sense, pure steganography is an example for security through
obscurity.

Secure cryptosystems depend on a key for making encrypted information readable
again. Even if an attacker knows everything about the algorithm used for encryption,
he would not be able to decipher the message.

2.1.4 Plausible Deniability

Plausible deniability enables the person or institution in question to claim to not
have known or done something and there is no way to proof the contrary [3]. In this
section, we look at the different nuances of plausible deniability, which make this a
hard problem.

Plausibility

Plausibility operates on a continuum and is a vague concept [1]. When we combine
this with a technical system, which has definite features (based on mathematics), it
gets interesting.

Most related work in this domain uses some kind of encryption scheme to cre-
ate plausible deniability (see chapter 6). These cryptographic systems are based
on mathematics which enables us to mutually and objectively agree about their
workings.

Cryptography makes it possible that we can keep a secret. However, keeping
the fact that we are keeping a secret a secret, goes beyond that. Steganography
essentially hides the fact that one is hiding information, but it does not address
facing adversaries [5].

Generally, it is out of one’s control what somebody else finds plausible. In [5],
Ragnarsson et al. state ”Plausibility is in the eye of the beholder.” – what an-
other party would find plausible is not clear. An independent judge in a functional
constitutional state might accept something as plausible while it may look entirely
different in a repressive, rogue state [5].

2 Theory 2.1.4 Plausible Deniability 9

We have to consider some important nuances of plausibility. Let’s look at them in
regard of deniable encryption and storage mediums which can be accessed directly
by an adversary.

Imagine the situation of an interrogation, where our storage devices are searched
for compromising data. We have to assume that an adversary is well aware of
cryptography and the concept of plausible deniability. Cryptography produces ci-
phertexts with high entropy [14], therefore an adversary with access to the raw bits
of our storage unit might search for random looking data. Therefore, our ability
to plausibly deny the existence of a ciphertext, is associated with how likely the
suspected ciphertext is actually just random data [5]. In most cases, this will be
assessed as unlikely since the free, unused space of a hard drive is usually not filled
with random data. If it was, the issue would be solved, because people who use
cryptography could effectively blend in with people who do not [5].

Flawed Plausibility

In order to evaluate the plausibility of different approaches, we need to define the
boundaries of the plausibility spectrum. First, we take a look at some imperfectly
plausible ways of preventing the disclosure of secret data:

Full Disk Encryption Consider a storage medium where full disk encryption was
applied. When interrogated and asked for the decryption key, the only way to handle
the situation might be to explain that the key has been forgotten, was destroyed
or lost. There is no way to prove this statement, so this is the weakest form of
deniability [5].

Encrypted Partitions Instead of a single encrypted partition, we could introduce
additional decoy partitions containing harmless data, prepared to be revealed. When
asked for the key, we disclose a key for one of the decoy partitions. This is only
marginally better than before, because we still need to convince the adversary that
the rest of the partitions are just random data, which might seem very suspicious
[5].

Hidden Volumes We can improve the situation by taking the idea of encrypted
partitions one step further. Instead of storing the secret and decoy partition side by
side, we could hide the really secret partition inside of the harmless partition. This
provides deniability by convincing the adversary that the free space in our harmless
partition is just random data. This is how TrueCrypt works [15].

In summary, unreferenced bits and high-entropy data may always raise suspicion
[5].

2 Theory 2.1.4 Plausible Deniability 10

Ideal Plausibility

A definition for ideal plausibility is given in [5], where a completely plausible plain-
text is described by the following three points:

1. Plausible plaintext is data which will not raise suspicion. An interrogator
believes this data is normally found on a device.

2. Unreferenced, high-entropy data is always suspected ciphertext.

3. A completely plausible plaintext may either contain only plausible plaintext or
ciphertext, for which a key must be supplied which will decrypt it to plausible
plaintext. It may not contain unreferenced random data.

Thus, for an ideal system, we would need to be able to explain every single
bit on a storage unit. Most practical implementations do not fulfill the notion of
ideal plausibility, but there exist some theoretical approaches and proof of concept
implementations [5][16][17].

Effective Plausibility

Due to the holistic approach and usability requirements of our proposed system, the
implementations go beyond an isolated cryptosystem and ideal plausibility cannot
be fulfilled. Therefore we will orient our approach by the following statements
regarding effective plausiblity [5]:

• The specific location of random data seems to contribute towards plausibility.

• The existence of random data should be explainable or can be linked to some
event or process.

• While under suspicion, there should not be a distinct stop condition for an
interrogator: The amount of withheld information should not be quantifiable
by the adversary.

2 Theory 2.2. The Android Operating System 11

2.2 The Android Operating System

In this section, relevant aspects of the Android platform security model are ex-
plained.

Android is the most popular end-user operating system in the world [18]. Its open
ecosystem offers possibilities for new experiments [19]. Moreover, the Android Open
Source Project (AOSP) makes the code of the operating system publicly available.
Therefore, it makes sense to develop our proposed system for this platform.

Many architectural security features in Android are based on the Linux kernel,
which has been used, examined and improved for many years, so it is a trusted
foundation for security critical operations [20].

Android’s security model is based on meaningful consent. Essentially, the app
developer, the user and the platform have to consent before any action can be
executed [18].

2.2.1 Authentication

The primary mechanism of authentication is the device’s lockscreen. It ensures that
only the device owner can interact with the device. The user’s PIN/pattern/pass-
word is used to derive the keys for encrypted storage [18].

Our threat model assumes that a third party, an adversary, is able to authenticate
as the user. Once authenticated, the user is authorized to access any resource or
action. This means, there are only binary states of security: the device is either
locked or unlocked, but there is nothing in between.

2.2.2 Isolation Layers

Android consists of many layers of isolation. In this section we look at the most
relevant ones.

Process isolation creates the most important boundary, where decisions are made
and enforced. Figure 2.1 depicts the isolation layers on top of the main processor of a
device. We are interested in the layers provided by the Linux kernel, which enforces
the separation of users. Android supports multiple user profiles and additionally,
so-called work profiles can be created within a user’s personal profile. Installed
applications are only available to the respective user/profile.

2 Theory 2.2.2 Isolation Layers 12

Figure 2.1: Android architecture: layers of isolation [19]

Applications

Applications running on Android are signed and run in an isolated sandbox, which
defines the available privileges for the app. Developers sign apps with private keys,
the public keys are shipped with the individual apps.

When an application is installed, the package manager creates a unique user
ID (uid) for it. The app will run with this uid, which makes isolation possi-
ble. An app without additional permissions may read and write data only in
/data/data/<package-name>, which is enforced by SELinux [19].

Permissions

The user can grant permissions to an app. There exist several types of permissions,
all of them have to be defined in the app’s manifest file by the developer [18]:

1. Normal permissions and are granted upon installation by default, e.g. network
communication.

2. Runtime permissions require the explicit approval within a dialog box by the
user at runtime, e.g. access to storage outside of the sandbox directory.

3. Special access permissions have to be granted by the user in the system set-
tings, and cannot be requested by a simple dialog box, because they are asso-
ciated with higher risk than runtime permissions. The privilege to display on
top of other apps is one example for a special access permission.

4. Privileged permissions are for pre-installed privileged applications only.

2 Theory 2.2.3 Device Policy Controller 13

5. Signature permissions can only be requested by components signed with the
same key as the component which defines the permission. For example, the
Android platform itself defines multiple such permissions that are only granted
to apps signed with the platform key.

2.2.3 Device Policy Controller

The Device Policy Controller (DPC) offers interfaces for device management for
enterprise deployment. A DPC is an application that enforces policies in its ”owned”
environment, which may either be the whole device or the work profile. A device
owner (DO) is installed in the main user account and manages device-wide policies.
A profile owner (PO) is installed on a secondary user, the work profile.

The work profile is based on the same multi-user concept as normal primary users.
The difference is that it shares the same common user interface with the primary
user. Apps and notifications are identified with a little badge icon to distinguish
them from personal apps and notifications [20]. All apps and data in the work
profile are separated from the personal profile by the same isolation and containment
concepts that protect apps from each other [18]. Additionally, a work profile can
also have its own lockscreen, which means the data is encrypted with a separate
encryption key [20].

A DPC adds a fourth party to the consent model described in the beginning.
Only if the enforced policy allows an action it may be executed [18].

2.2.4 Android Debug Bridge

The Android debug bridge (adb) allows debugging, file transfer, package installation,
Unix shell access, etc. from a computer [21]. The adb daemon runs on Android
devices when ”USB debugging” is enabled in settings. A connection is initiated
with the adb command-line tool running on a computer connected over USB or
WiFi, or locally on the device itself [19].

It offers a powerful set of features, which has to be considered as a potential
attack surface [19].

2.3 Threat Model and Assumptions

In this section, we discuss Due Process’s threat model and its operational as-
sumptions.

2 Theory 2.3.1 Threat Model 14

2.3.1 Threat Model

We consider an adversary that is able to access an Android device physically. The
device is configured and protected by the Android lockscreen, which authenticates
the user. The adversary is able to satisfy the lockscreen challenge. It does not
matter whether the device owner unlocks the device for the adversary or discloses
the correct PIN/pattern/password. The adversary captures the device to search
for secrets and/or to install additional applications/malware. The device may be
connected to a computer, e.g. via USB.

According to the principle of open design (section 2.1.3), the adversary may
be aware of Due Process’s design and will use this knowledge to determine the
existence of the application on the system.

This specific threat of physical access to Android devices is also described in [18],
where intimate partner abuse and border control situations are explicitly mentioned.

We consider threat actors with various capabilities under the assumption that
each of them can satisfy the lockscreen challenge:

[T1] Non-technical interrogators, which will perform a device search without any
additional tooling.

[T2] Interrogators who will install additional tools to perform an on-device search.

[T3] Interrogators who will install additional tools on the device and connect it
to a computer, using all available communication protocols, including adb to
interact with the device.

[T4] Highly sophisticated attackers capable of violating device integrity assump-
tions listed in section 2.3.2, e.g. zero-day bootloader exploits.

2.3.2 Assumptions

The following assumptions characterize the environment and scope of Due Pro-
cess’s application.

Android Version

The implementation is based on Android 10, the current stable release of Android.
When implementing an application that targets widespread adoption, it is usually
recommended to consider the trade-off of including older versions and therefore more
devices and users versus newer platform features and less devices and users [22]. For

2 Theory 2.3.2 Assumptions 15

most apps, it is good practice to support 90% of active devices [22]. To simplify
development, we disregard any limitations of older versions and only consider API
level 29, which is Android 10.

Device Integrity

Android’s specification are enumerated in the Android Compatibility Definition Doc-
ument (CDD), which includes the Android security model [23]. If a device does not
conform to CDD, it is not Android [18]. We assume that the device conforms since
the proposed application’s security depends on its environment. Specifically, the
system imposes the following requirements on the device’s integrity:

Rooting Rooting is the process of modifying the system in a way that allows
running processes without isolation and sandboxing [18]. This modification is an
example of a CDD violation. Rooting can happen both intentionally by the user or
unintentionally via yet unknown vulnerabilities. An adversary could use a process
with elevated privileges to access otherwise protected paths and modify sensitive
settings, which allows thorough analysis of the stored data and installed applications.
Therefore, we assume that the system is not rooted.

Bootloader Unlocking If a device supports unlocking its bootloader, it allows
flashing modified firmware and consequently rooting as well [18]. We assume that
the device’s bootloader is locked and unlocking will cause a factory reset of the
device, which wipes the writeable data partitions including all user data.

Device Policy Controller Persistence The Device Policy Controller (DPC) and
the policies enforced by it are an important part of Due Process’s security. There-
fore, we assume that an adversary cannot disable the active DPC without wiping
the data of its controlled domain.

Malware We assume that the device is malware-free during setup and normal use
of Due Process. The OS, the kernel and the bootloader are trusted. The user
does not install apps that could monitor the input and/or output while using secret
apps or Due Process itself.

If an adversary installs malware later during a device interrogation, the user will
stop trusting their device and restore it to factory defaults.

2 Theory 2.4. Requirements 16

Encryption

We assume that all data is encrypted with file-based encryption, which is the case
with all new devices running Android 10 [20]. As file-based encryption enables the
use of different keys for separate storage areas, this ensures the protection of sensitive
data even if the main user’s key is disclosed.

Furthermore, file system metadata, including the directory structure, file names
and sizes, permissions and modification dates are protected by an additional layer
of encryption [20]. This is also supported since Android 9 [20].

Adversary

We assume the adversary is rational: it will stop forcing the device owner once it is
convinced that all secrets have been revealed.

2.4 Requirements

Considering the threat model and the assumptions under which Due Process will
operate, it should fulfill certain requirements in three main categories: Security,
plausibility and usability.

2.4.1 Security

A system is secure, if the cost of successfully attacking it exceeds the potential profit
[19]. The user’s data and apps (content and meta-data), which they have chosen to
protect with Due Process, have to be kept confidential. This should also be the
case if an adversary ([T1]-[T4]) finds the storage location of the data.

Furthermore, the system should be maintainable, both for the developer and user
without disproportionate effort, in special consideration of the continually evolving
Android platform.

2.4.2 Plausibility

The system should enable effective plausibility as defined in section 2.1.4. Ideally,
an adversary would quickly arrive at the conclusion that the user is not hiding any
secrets after access to their unlocked Android device.

2 Theory 2.4.3 Usability 17

2.4.3 Usability

The system should be user-friendly. Installation, setup, usage and maintenance
should be possible and attractive for non-technical users. Complex user manuals
should be avoided.

Moreover, the system should allow for seamless switching between normal and
sensitive data operations/application usage. This has two advantages: First, it
allows for a convenient every-day usage. Second, if the user is apprehended with the
device in sensitive operation, deniability loss can be avoided by quickly switching to
the normal/deniable mode.

2.5 Implementation Options

In this section, we will examine and compare various implementation options that
could be suitable for our purposes.

2.5.1 Autonomous Encryption App

Cryptographic schemes in the domain of deniable encryption offer the most promis-
ing level of plausibility. Their mathematical properties can even make the notion of
ideal plausibility possible [5].

Autonomous cryptography software like TrueCrypt works well for systems where
data and applications are mostly independent [15]. For most desktop software, it
does not matter where the corresponding files are stored. Due to the sandbox isola-
tion on mobile OS, the data is often coupled with an application itself. Therefore,
an autonomous encryption app might not work as well for mobile environments.

Additionally, previous work has demonstrated flaws in hidden container systems
like TrueCrypt, which stem from the mentioned separation of data and software [24].
The operating system and applications accessing files in a hidden/deniable place can
reveal the existence of such a file system or encrypted container, e.g. sensitive files
in a recently opened file list [24].

Due to the requirement of sensitive application protection, which cannot be ful-
filled by autonomous encryption apps, we do not consider them in our further eval-
uation.

2 Theory 2.5.2 Virtual Container App 18

2.5.2 Virtual Container App

Virtualization allows apps to run inside apps. These container apps are highly popu-
lar on the Google Play Store. Plausible deniability is enabled by hiding and running
the private apps inside a harmless looking decoy app – the container app. Some of
these solutions pretend to be a calculator app which unlocks to the containerized
apps when a secret calculation is entered.

However, this approach was not considered due to inherent security issues. The
main concern is that for containerized apps, Android’s security guarantees are ren-
dered ineffective. The containerized apps all run with the uid of the container app
and therefore – from the OS and kernel’s perspective – potentially inherit the super-
set of granted permissions of all containerized apps. Previous work has documented
multiple security flaws that allows exploitation of this issue [25]. Furthermore, if
containerized apps put data in the user’s media storage, this data is not protected
at all.

2.5.3 Device Policy Controller App

A DPC app has an extensive set of capabilities, which can be used for our purposes.
Besides setting restrictive policies, it can also hide apps. Setting an application hid-
den effectively uninstalls them and makes it unavailable for use, but the package file
and application data remain [26]. Although not designed with plausible deniability
in mind, this feature could be used to hide the existence of apps.

Policies can be used to restrict analysis of the system by an adversary, e.g. dis-
allowing the installation of additional apps.

Additionally, a DPC can be informed when the device’s lockscreen challenge
is failed. This allows us to implement a trigger for a lockdown of the system,
e.g. when the user deliberately enters the wrong PIN/pattern/password, we can
inconspicuously switch the device into ”deniable mode”.

The DPC can run in either profile owner (PO) mode or device owner (DO) mode.

Profile Owner Mode

When a DPC initiates PO mode, the provisioning process of creating a work profile
is started. From the user’s perspective, only an app has to be installed like any
other conventional application. The sensitive apps are then installed inside the
work profile, where we can hide them at any time. In the standard launcher running
on Google Pixel, the dedicated work section disappears if all apps from the work
profile are set to hidden. A user can access apps in the personal and work profile

2 Theory 2.5.3 Device Policy Controller App 19

side by side, which enables seamless switching between normal and sensitive apps
usage.

As described in section 2.2.3, the work profile’s data can be encrypted with a
separate key, which is a useful property for our security requirements, preventing
loss of confidentiality facing [T1]-[T4]. This is, as long as the user is not forced to
disclose this key as well and the key is evicted from memory.

A PO can enforce useful policies like restricting app installation inside the work
profile, disallowing app installation from unknown sources globally and disabling
cross-profile copy and paste [26]. With these, [T1]-[T2] can be directly countered.

However, an active work profile shows up in various spots of Android’s user inter-
face, e.g. in the following system settings: Sound; Security; Accounts; Language
and Input; etc. This is inherently counterproductive concerning plausibility, so ac-
cording to our definition of effective plausibility (2.1.4), the user may have to prepare
an explanation for the existence of the profile.

Device Owner Mode

Compared to PO mode, the DO can set additional policies to further restrict analysis
by an adversary. Most notably, it is possible to disallow USB debugging features
[26] globally, which would limit the attack surface especially for [T3].

Moreover, a DO can create and manage secondary users, which provides similar
isolation like the work profile. We could use the secondary user for all sensitive apps
and data. To enable deniability, the DPC can log itself out of the secondary profile
and disallow switching users, which disables the user interface for switching to the
secondary profile [26]. The slight advantage in contrast to PO mode is that the
secondary user is not visible anymore in the UIs, which may help in avoiding key
coercion for this user.

The installation process is clearly more inconvenient for the user: To enable a DO,
a user is required to remove any secondary users and also all accounts managed by
the Account Manager API, which includes e.g. the Google Account. Furthermore,
the device has to be connected to a computer via adb and the following command
has to be issued to set the DO [27]:

adb shell dpm set-device-owner <package-name>/.<AdminReceiver>

As soon as the DO is active, a message appears in Android’s quick settings area:
Device is managed by your organization. This message cannot be removed, as
a user should be aware of an active DO DPC. The DO variant is less conspicuous
than the PO in terms of quantity of UI elements, the quick settings message may
make plausible explanation by the user necessary nevertheless.

2 Theory 2.5.4 Custom Firmware 20

2.5.4 Custom Firmware

When it comes to security and plausibility, customizing the firmware to suit our
requirements allows for versatile possibilities.

Extending the DPC approach, we can remove all traces of the work profile in the
user interfaces of the operating system. It would also allow the implementation of
secondary (real and decoy) work profiles and we could introduce creative unlocking
mechanisms, e.g. invisible key-pads.

However, installation of custom operating systems is an advanced process and
highly inconvenient compared to the approaches before, as it requires a complete
wipe of the device’s data. In addition, the cost of maintenance is much higher,
compared to app-based systems. Therefore, we will only describe necessary or useful
changes to AOSP which would improve the DPC app-only approach, rather than
implementing them in section 7.1.

We take a look at some previous work which is based on customized AOSP code
in chapter 6.

2.6 Evaluation of Implementation Options

To determine the different advantages and disadvantages of the described imple-
mentation options, we evaluated them based on five questions in three categories,
derived from the defined threat model (section 2.3.1) and requirements (section 2.4).
The questions were answered based on technical experiments and research of official
documentation and related work.

2.6.1 Questions

Security

[QS1] Would sensitive data stay confidential during a local device search ([T1]-[T2])?

[QS2] Would sensitive data stay confidential during an adb search ([T3])?

[QS3] Would sensitive data stay confidential if the underlying system is exploited
([T4])?

[QS4] Is the system maintainable without high effort (developer and user)?

[QS5] Is the system compatible with Android’s platform security model?

2 Theory 2.6.1 Questions 21

Plausibility

[QP1] Is the usage of the system safe from inexplicable questions at first glance (e.g.
launcher, top-level settings) ([T1])?

[QP2] Is the usage of the system safe from inexplicable questions when device is
searched manually, on-device? ([T2])?

[QP3] Is the usage of the system safe from inexplicable questions when device is
searched via adb ([T3])?

[QP4] Is the usage of the system safe from inexplicable questions when the underlying
system is exploited ([T4])?

[QP5] Does the system fulfill the notion of ideal plausibility?

Usability

[QU1] Can the system be installed like a conventional app?

[QU2] Does the setup process work without a desktop computer?

[QU3] Does the setup process work without an unlocked bootloader?

[QU4] Are the sensitive apps easily accessible for day-to-day use for the user?

[QU5] Is it easy to recover the system from deniable mode?

2
Theo

ry
2.6.2

Results
22

2.6.2 Results

Category Container Profile Owner Device Owner Custom Firmware

[QS1] (local) no (data in me-
dia storage) yes* yes* yes

[QS2] (adb) no (data in me-
dia storage)

yes, if profile key
is evicted and
not disclosed

yes, adb can be
disallowed [26] yes

[QS3] (exploit) no, direct access
yes, if profile key
is evicted and
not disclosed

yes, if user key
is not disclosed yes

[QS4] (maintainability) yes yes yes no
[QS5] (platform) no, security issues yes yes yes
Security Sum 1 4 4.5 4
[QP1] (first glance) yes yes* yes* yes

[QP2] (local) no (data in me-
dia storage) yes* yes* yes

[QP3] (adb) no (data in me-
dia storage)

no, inexplicable
data can be found

yes, adb can be
disallowed [26] yes

[QP4] (exploit) no, direct access no, inexplicable
data can be found

no, inexplicable
data can be found theoretically yes

[QP5] (ideal) no no no theoretically yes
Plausibility Sum 1 2 3 5
[QU1] (conventional install) yes yes yes, but significant effort no
[QU2] (w/o computer) yes yes no no
[QU3] (w/o bootloader) yes yes yes no
[QU4] (easy day-to-day) yes yes no, requires user switch theoretically yes

[QU5] (deniable recovery) yes yes, depending on
implementation yes yes

Usability Sum 5 4.5 2.5 2
Total Sum 7 10.5 10 11

* Detailed evaluation after implementation identified some caveats, see section 5.1. Not considered here.

2 Theory 2.6.2 Results 23

The table sums up the questions which could be answered with yes. If there are
any caveats, we counted it as 0.5 yes. This analysis is an attempt of comparing the
different options and determining the best trade-off between plausibility, usability
and security including maintainability.

Figure 2.2: Visual representation of results

Figure 2.2 shows the results in a diagram, where the y-axis indicates the number
of positively answered questions while the x-axis plots the different implementation
options. Connecting the dots helps visualizing that security and plausibility im-
proves with technical sophistication, but usability unfortunately decreases. Custom
AOSP received the highest sum in this analysis, however, since usability was a ma-
jor goal of this project, this approach was not taken. Security and usability almost
intersect at the profile owner approach, which justifies our decision to implement
this variant.

3
Implementation

This chapter presents the architecture and implementation details of Due Process.

Due Process is a native Android application written in Java with language
level 1.8. The app targets Android SDK version 29, which corresponds to Android
10’s API level [28]. The published builds are signed with the developers key and are
not debuggable.

The application acts as a Device Policy Controller (DPC) in a work profile,
provisioned as the profile owner.

The architectural design orients itself towards the recommended standard model
for Android applications. It consists of several Activities and Fragments responsible
for the user interface (UI), classes for data models and data persistence, and various
utility classes, especially for communication with OS APIs. One of the core com-
ponents is the Device Admin Receiver, which implements the device administration
functionality and its definition in the manifest file publishes the app as a DPC to
the operating system.
Most of the UI’s layout is defined in XML files.

3.1 General Architecture

This section describes the general technical architecture and program flow of the
application.
The app can be split in three parts from a user’s perspective: First, the setup
UI, which is initially presented to the user after installing the application in their
personal profile. Second, the introduction UI, which gives important explanations
to the user and is responsible for essential initial configuration before the user can
enter the third, main part of the application, the management UI. This functions as
the control and configuration center of the app.

25

3 Implementation 3.1. General Architecture 26

The MainActivity is the UI entry point when the app is launched from the home
screen and controls which one of the three parts will be shown to the user. The
setup’s SetupFragment will only be shown if the app is started from a profile where
the app is not the owner (usually the personal profile of the primary user). The in-
troduction’s IntroActivity is launched after the setup is done and the user is trans-
ferred into the work profile for the first time. When the initial configuration is fin-
ished, the MainActivity will always show a LockscreenFragment when launched in-
side the work profile, protecting the management UI, which consists of the navigation
ManagementNavFragment, the LockdownFragment, AppManagementFragment, and
ConfigFragment. To configure the custom lockscreen, a CodeConfigActivity can
be launched from the IntroActivity during initial configuration or the MainActivity
when the corresponding preference is chosen in the ConfigFragment.

Figure 3.1: MainActivity launch flow

3 Implementation 3.1. General Architecture 27

All of the mentioned UI classes are inside of an ui package, which has three cor-
responding sub-packages, namely setup, intro and management. Additionally, it
holds two classes for the custom lockscreen, PatternUnlock and a PatternUnlockListener.

dueprocess
ui

MainActivity

PatternUnlock
PatternUnlockListener
setup

SetupFragment

PostSetupFragment

intro
IntroActivity

SampleSlideFragment
management

LockscreenFragment

ManagementNavFragment

AppManagementFragment

AppListAdapter

LockdownFragment

ConfigFragment

CodeConfigActivity

model
AppInfo

AppInfoMapper

util
PostProvisioningTask

HidingUtil

NotificationUtil
Util
CornerHelper

DueProcessDeviceAdminReceiver
AppSettings

Figure 3.2: Due Process’s packages and classes

In the following sections, we will describe the details of each part of the applica-
tion. In the beginning of each section, the related and relevant classes are listed.

3 Implementation 3.2. Setup 28

3.2 Setup

dueprocess
ui

setup
SetupFragment

PostSetupFragment

util
PostProvisioningTask

HidingUtil

NotificationUtil
DueProcessDeviceAdminReceiver

When the app is installed and started in the personal profile, the user can initi-
ate the setup process. A button in the SetupFragment will create and start a new
intent with action DevicePolicyManager.ACTION_PROVISION_MANAGED_PROFILE.
The intent also specifies the admin component name, the DueProcessDeviceAdmin-
Receiver. With this intent, the provisioning of the work profile is executed. Android
will create a new separate profile, assigning an identifier – the userId – to the new
user. The primary user has ID 00, when a new user is created it starts with userId
10 and increments this with every additional user [29]. This is then used for all cre-
ated directories to separate the profiles, e.g. /data/user/<userId>/<package> for
all the application data and /data/media/<userId>/ for the profile’s media storage.
The sub-directories in these locations are owned by the userId of the respective user
and application [29]. Applications are only installed once in /data/app/<package>
and then enabled or disabled for each user. An application’s uid (mentioned in
chapter 2.2.2) consists of the two-digit userId (e.g. 00 or 10, 11, 12, ...) followed by
a five-digit appId (e.g. 10052). When this app is run by the primary user, it runs
with uid 0010052, when started from the work profile it runs with 1010052.

Before a device admin can enforce policies, it has to declare them in the manifest
file. To prevent fingerprinting Due Process based on its metadata about requested
policies, it simply declares all of them. The actually relevant ones are: WATCH-LOGIN
to watch device login attempts by the user, FORCE-LOCK to lock the profiles, WIPE-
DATA to wipe the profile data,

When the system’s provisioning operations are finished, it informs the Device-
AdminReceiver via a callback method. In order to receive this intent, the intent
filter android.app.action.PROFILE_PROVISIONING_COMPLETE has to be declared
in the manifest. Our DueProcessDeviceAdminReceiver will create a new Post-
ProvisioningTask, which will execute the following operations: First, it enables
the work profile, after that, we add a new policy that disallows unified passwords.
This makes sure that the managed profile cannot share the lockscreen challenge with
the primary user [30].
Then, some default apps are enabled for the profile, e.g. Google Chrome, Gmail
and the Google Play Store, so the user can install additional apps. It also marks

3 Implementation 3.3. User Introduction 29

the Play Store app as sensitive as a later recommendation to the user. Apps marked
sensitive will be hidden when the user activates the deniable lockdown mode.

The MainActivity’s standard label for the launcher icon is Setup. Once the
app is enabled in the work profile, this label does not make sense anymore. To
solve this, the application’s manifest declares an alias for the MainActivity, so
that the app inside of the work profile can have a different label in the launcher,
namely Management. The HidingUtil is used to hide the Setup and show the
Management launcher icon, by disabling and enabling the respective activity(-
alias) with Android’s PackageManager class.

When the system’s provisioning activity returns with a successful result code, the
PostSetupFragment is presented to the user. In this fragment, a button is created
that transfers the user to the app inside the managed profile. This is possible with
Android’s CrossProfileApps class, which allows interaction of instances of the same
app across the profile boundary [31].
Finally, a timer is set for a few minutes that prepares a notification sent from the
personal profile’s version of the app, which reminds the user to perform an uninstall
for this instance. The ACTION_DELETE intent to trigger an uninstall prompt can only
be sent for an app’s own instance. The removal of the app makes sure we leave the
personal profile in a cleaned up state, mitigating analysis possibilities of an attacker
([T1]-[T3]).

3.3 User Introduction

dueprocess
ui

intro
IntroActivity

SampleSlideFragment
management

CodeConfigActivity

AppSettings

After the user has been transferred to the app’s instance in the work profile for
the first time, the IntroActivity is started. Quite some development effort went
into this part of the application, as usability was a key requirement for the system.
This activity is a typical app introduction and uses a public library to create a slide-
based UI [32], where each slide explains one key feature. Besides critical explanations
on default slides, the SampleSlideFragments are employed to create custom slides
with buttons. These require the user to perform important basic configurations and
cannot be skipped. There are three of these initial required settings:

1. Disallowing unified passwords as described in section 3.2 is not enough, we

3 Implementation 3.4. Management 30

also need to set a separate lockscreen challenge. An intro slide helps the user
to configure this and only then allows proceeding.

2. The current implementation of the custom lockscreen (see section 3.6.2) re-
quires the special access permission to draw on top of other apps. The user is
sent to the corresponding settings screen, where this has to be enabled before
proceeding.

3. Finally, the custom lockscreen itself has to be set up. The user is sent to the
CodeConfigActivity. The AppSettings store the unlock pattern of the user,
so only if there is a valid value we let the user continue.

3.4 Management

After initial setup and configuration is done, the user may enter the management ver-
sion of the app. This is the main user facing component for everyday usage. The ac-
tual UI is protected by the custom lockscreen and only if the correct code is entered,
the ManagementNavFragment is shown. This holds the bottom navigation bar and a
view for further fragments, which provides access to the AppManagementFragment,
LockdownFragment and the ConfigFragment. The following sections describe each
of these components.

3.4.1 Managing Apps
dueprocess

ui
management

AppManagementFragment

AppListAdapter

model
AppInfo

AppInfoMapper

util
HidingUtil

AppSettings

The work profile contains privacy sensitive apps and the AppManagementFragment
enables administration of the visibility status and behavior of these apps. It holds a
RecyclerView which is populated with all work profile apps, but by default, filters
out Android system packages without a launch intent and Due Process itself.
Optionally, this filter may be disabled in the application’s settings, so all (system)
apps can be managed.

3 Implementation 3.4.2 In-App Trigger Buttons 31

Android’s PackageManager class allows us to retrieve the list of all installed appli-
cations. With the flag MATCH_UNINSTALLED_PACKAGES it also returns application
information from the list of uninstalled apps, where the DONT_DELETE_DATA flag has
been set. This is necessary, because we also want to show the applications which
were hidden by the device policy manager.

The returned list holds ApplicationInfo objects, which are mapped by the
AppInfoMapper to our own AppInfo wrapper object, which holds additional infor-
mation about an app, such as its visibility and sensitivity status.

For each application, two buttons are available: One – a simple toggle – shows
and changes the visibility status, the other one – a switch – shows and changes the
behavior for lockdown mode. When the user toggles the first one for a visible app,
the device policy manager will immediately hide this app and vice versa. These
operations are conveniently wrapped by the HidingUtil. The switch marks an
application as sensitive. All apps marked this way will be hidden when the user
activates lockdown mode. The list of sensitive apps is stored in the preferences with
the AppSettings class.

3.4.2 In-App Trigger Buttons
dueprocess

ui
management

LockdownFragment

The LockdownFragment is a simple interface with two large buttons, a lockdown
and a wipe button, which provide additional possibilities to trigger these features
in the app. Both of them are attached to a long click listener. A long button click
on the lockdown button will immediately activate lockdown. The wipe button will
show a confirmation prompt before executing a wipe.

3.4.3 Settings
dueprocess

ui
management

ConfigFragment

CodeConfigActivity

AppSettings

All settings concerning the general behavior of Due Process can be configured
inside the ConfigFragment. This is mostly handled by Android’s Preference li-
brary, so the list of available preferences is actually defined in an XML file [33].
Every read and write operation not handled by the library is accomplished with the
AppSettings class. The custom lockscreen is configured with an extra activity, the
CodeConfigActivity.

3 Implementation 3.5. Lockdown & Wipe 32

3.5 Lockdown & Wipe

dueprocess
ui

management
LockdownFragment

util
HidingUtil

DueProcessDeviceAdminReceiver
AppSettings

The lockdown and wipe feature enable the user to switch the device into a de-
niable mode, where the existence of apps can effectively be hidden and hardens it
against adversarial analysis. To make this process as convenient and inconspicuous
as possible, there are multiple ways to trigger it.

3.5.1 Triggers

There are currently two main ways to trigger lockdown and wipe:

1. Convenience in-app buttons as described in section 3.4.2.
If lockdown is triggered by the in-app buttons, the lockdown actions are exe-
cuted in a separate thread and the UI is closed with finishAndRemoveTask(),
which will finish the activity and additionally remove it from the recent apps
overview. Handling the lockdown procedures in a separate thread will prevent
the profile lockscreen from immediately popping up, since the management
app is already closed at the time of locking the profile.

2. Inconspicuous triggers on the device lockscreen.
This option allows a user to trigger lockdown and/or wipe by deliberately fail-
ing the device’s lockscreen challenge. This is possible because the DueProcess-
DeviceAdminReceiver is notified about failed PIN/pattern/password attempts.
When the user configured threshold of fails is reached, we either activate lock-
down or wipe.

3.5.2 Actions

Lockdown

When lockdown mode is activated, multiple actions are executed by a call to the
corresponding method of the HidingUtil.

3 Implementation 3.5.2 Actions 33

First, all apps marked sensitive are retrieved from the AppSettings and then
hidden. Optionally, Google Play Services (com.google.android.gms) are hidden
as well. This makes sure that a potential Google account will be removed from the
managed profile, which would show up in the accounts listing in system settings
even with all Google launcher apps hidden. Usually it is sufficient to hide all apps
with an account managed by the AccountManager API to remove the association
and settings entry, but with Google apps, the account is administered by the Play
Services application. This will log the user out of all Google apps inside the work
profile even if not all are hidden. At the time of development however, hiding
the Play Services had unexpected side effects which affected the Google Account
login state and apps in the personal profile as well, where suddenly all Google apps
were rendered unusable (manifesting as complete hangup when launching). This
reproducible behavior was reported to Google as a bug.

If sensitive data is stored in the profile’s media/data directories, it is especially
important that all means of directly accessing these locations are inhibited. The
following packages are hidden to realize this:

• Media Storage (com.android.providers.media) which is a Content Provider
for common media types, such as audio, video, images, etc. [34].

• External Storage (com.android.externalstorage) which provides access to
the SD card contents (which can either be removable storage or non-removable
storage).

• Downloads (com.android.providers.downloads) which is another Content
Provider for all downloaded items [34].

• System Tracing (com.android.traceur) which is used to record system traces
to analyze performance-related bugs and may contain sensitive data as well
[35].

The result of hiding these packages can be observed in the Files application, depicted
by a before and after comparison in figure 3.3. Any application using these to access
files, e.g. an upload file chooser dialog in a web browser – which can also be used
to browse sensitive directories – will not work anymore.

Furthermore, all apps with runtime permissions to access external storage (READ-
_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE) are retrieved from the Package-
Manager. Then, these are stored in a list and the permission grant state will be set
to denied. We have to keep track of these apps for later recovery of the original
grant state, when lockdown is ended. Finally, a policy is set which will auto deny
newly requested storage permissions.

Next, some policies are set to harden the system against further analysis. An-
droid’s share dialog supports sharing into the managed profile. To remove this UI

3 Implementation 3.5.2 Actions 34

Figure 3.3: Effect of hiding specific content provider packages in the Files app

occurrence, this feature is disabled. The cross profile clipboard function is disal-
lowed as well, to prevent pasting of sensitive data in the personal profile. Moreover,
the installation of any app inside the profile is blocked and the installation of apps
from unknown sources is blocked globally. This greatly limits the possibilities for
installation of additional analysis tools or malware. Debugging features are also dis-
abled for the work profile, which will block starting activities, making service calls,
accessing content providers, sending broadcasts, installation and uninstallation of
apps, clearing user data, and so on [30]. This only applies to the managed profile
unfortunately.
Additionally, all biometric authentication is disabled for both profiles, since these
authentication methods may be more vulnerable to coercion.

Optionally but recommended, Due Process’s launcher icon will be hidden
by disabling the component of the activity-alias. This disables the intent-filters
android.intent.category.LAUNCHER and android.intent.action.MAIN which ad-
vertises it to the system as launcher activity and main entry point to the application.
Unfortunately, this will not hide it in the same way as the sensitive apps (which is
similar to uninstalling), because that would mean we remove the profile owner and
without it, the work profile could not exist anymore.

Finally, by default, the managed profile is locked silently without a notification,
by calling the device policy manager’s lockNow() method. This does not remove the
encryption key from the key-ring [26]. Only if the flag FLAG_EVICT_CREDENTIAL-
_ENCRYPTION_KEY is set for the lockNow() call, the user’s credential will be removed
from memory [26]. This however will also show a persistent notification informing
the user that the work profile is locked, and it will only go away once the user enters

3 Implementation 3.6. Lockdown Recovery & Custom Lockscreen 35

the profile’s credentials again. This is a trade-off between security and plausibility,
which is analyzed in section 5.1.1. To provide users options to align the respective
behavior with their specific threat model, this can be configured in settings.

Wipe

When a wipe is requested by the user, a call to the device policy manager’s method
wipeData() including the flag WIPE_SILENTLY is made. This will remove the work
profile and all policies set by the profile owner from the system immediately [26].
After a wipe, no traces are left on the system, which obviously provides maximum
security and plausible deniability for the sensitive data and apps. A practical use-
case would be for example if there are only apps which store their data in the
cloud anyway and one wants to keep the fact that one is using these cloud-based
services confidential. Users could also prefer a wipe over lockdown depending on the
actual threat actor they are facing. If they are usually confronted with [T1], they
might use lockdown most of the time, but if suddenly a higher skilled adversary is
encountered, they could opt for a wipe. This decision can even be made from the
device’s lockscreen, if configured.

3.6 Lockdown Recovery & Custom Lockscreen

dueprocess
ui

MainActivity

PatternUnlock
PatternUnlockListener
intro

IntroActivity
management

LockscreenFragment

ConfigFragment

CodeConfigActivity

util
HidingUtil

CornerHelper

DueProcessDeviceAdminReceiver
AppSettings

Since lockdown mode sets several restrictive policies, makes apps inaccessible and
the management app’s launcher icon can be hidden as well, a way of recovering from
this state is necessary. The implementation of this recovery has to be well thought
out. For this unlocking mechanism two requirements were identified:

3 Implementation 3.6.1 Implementation Experiments 36

1. It needs to be inconspicuous: Either it makes use of some benign feature native
to Android or it is invisible.

2. It has to depend on a user provided secret (e.g. a PIN/pattern/password) [13].

3.6.1 Implementation Experiments

Multiple ways of implementing such an unlocking mechanism were explored and
tested. Essentially, there are two kinds of events the application could listen to:
First, there are implicit system intents/broadcasts. As of API level 26 and its power
consumption/background execution restrictions, only a limited number of broadcast
receivers can be registered however, such as ACTION_NEXT_ALARM_CLOCK_CHANGED
and ACTION_BOOT_COMPLETED [36].
The other kind of event would be explicit activity intents, e.g. ACTION_SEND.

This section describes the findings of our unsuccessful but interesting experi-
ments, skip ahead to section 3.6.2 for the approach that was implemented eventu-
ally.

System Alarm Clock

The first attempt was using the system alarm clock, where a user has to set an alarm
with the correct secret time and repeating day. We can register a broadcast receiver
for ACTION_NEXT_ALARM_CLOCK_CHANGED, which will inform the application when
the next upcoming alarm has changed. Usually this will be triggered by Android’s
system clock app, because it uses the AlarmManager class (but any app can use
these interfaces). When Due Process receives such an intent, it asks for the time
set. If this equals the secret, user configured time, the system unlocks. Regarding
the number of possibilities, we would have 60 minutes per day, times seven for the
repeating days. This would equate to 60 ∗ 24 ∗ 7 = 10080 combinations, which is an
acceptable number.

However, the mentioned broadcast is never delivered into the work profile. Since
the setup instance should be removed from the personal profile for security reasons,
there is no suitable way to receive the user’s unlock secret.

Share Intent

Direct share intents can be used to exchange data between two applications. This
does not work across the profile boundary but the profile owner can explicitly allow
certain cross-profile intents [26]. The user could then send the password via a share
intent (ACTION_SEND) to the management app.

3 Implementation 3.6.1 Implementation Experiments 37

However, cross profile intents only work for activity intents [26], which cannot
be received by Due Process if its activity is disabled in lockdown mode. Conse-
quently, even if we kept an instance in the personal profile in the previous alarm clock
solution, it would not work. Cross profile intents are therefore not an appropriate
tool.

Clipboard

Another attempt was to use the system clipboard. The idea is that the user writes
down the secret unlock code somewhere and copies it to the clipboard. Then, the
user unlocks the work profile triggering a ACTION_BOOT_COMPLETED broadcast, which
is delivered into the work profile. When Due Process receives this, we retrieve
the clipboard content. However, an application has to be in focus in order to access
the clipboard, apparent in the following error message:

[...] /system_process E/ClipboardService: Denying clipboard access to
com.bernhardgruendling.dueprocess, application is not in focus

neither is a system service for user 39

Android allows creating invisible overlay views with the WindowManager class.
We could draw such an overlay and listen for onFocusChange() and access the
clipboard when the view gains focus. However, even with the view’s hasFocus()
method returning true, clipboard access is denied. This means, an overlay does not
count as application with regards to the clipboard. This makes a clipboard based
approach infeasible.

Invisible Keypad

Sticking to the idea of invisible overlay views created upon ACTION_BOOT_COMPLETED,
we could use these to create an invisible keypad. One requirement is that we have to
let all input pass through to the underlying UI, because otherwise this would raise
suspicion. An approach would be to create just a little, e.g. 1px view in an overlay
with the following parameters: FLAG_WATCH_OUTSIDE_TOUCH and FLAG_NOT_TOUCH-
_MODAL. The first one will let us capture MotionEvents for touches that are outside
of our view [37]. The second one lets pointer events outside of the window to be
sent to the UI behind it [37].
Conceptually, the coordinates of these touch events could be used for an invisible
keypad. However, since Android 4.2, the InputDispatcher will only return zeros
for the coordinates if the underlying view does not share its uid with the listening
view [38][39]. This is an undocumented security feature [37][39], but a reasonable
change as previous work has shown that keyloggers could be implemented this way
[40].

3 Implementation 3.6.2 Current Implementation: Invisible Pattern Unlock 38

3.6.2 Current Implementation: Invisible Pattern Unlock

Our experiments eventually lead to the current implementation, a pattern unlock
mechanism based on the ACTION_BOOT_COMPLETED event and an invisible Window-
Manager overlay. The user experience is similar to how Android’s native pat-
tern lockscreen works. Three base components use this pattern unlock system:
DueProcessDeviceAdminReceiver for lockdown recovery, MainActivity when show-
ing the LockscreenFragment and the CodeConfigActivity when the unlocking
secret is configured by the user.

Lockdown Recovery Procedure

This section describes the process of lockdown recovery if the management’s app
icon is hidden. The user initiates it by unlocking the work profile and then drawing
a pattern with an invisible overlay.

The DueProcessDeviceAdminReceiver registers an intent-filter for ACTION_BOOT-
_COMPLETED, which makes the system independent from the disabled activity. When
the intent is received, the user configured unlock credential is retrieved from the
AppSettings and with this information, a new PatternUnlock object is created.
This class handles and holds the invisible overlay and initializes the system with
the stored secret. The PatternUnlockListener, which is an OnTouchListener will
be attached to the created view. This listener implements the actual logic for the
pattern drawing. Furthermore, it holds a callback listener which informs the calling
component (one of the three mentioned above, in this case the admin receiver) about
the user’s input progress and result.

The device’s screen and its four corners make up the drawing board. The user
starts in one corner and moves the little overlay across the screen, from corner to
corner. The unique combination and sequence of corners results in the user’s un-
locking secret. Upon initialization, a little invisible square is created and positioned
in the starting corner, waiting to be moved by the user.

The touch listener discerns three events: ACTION_DOWN when the touch gesture
starts, ACTION_MOVE for every change during the gesture (e.g. moving the view) and
ACTION_UP when gesture is finished.

ACTION_DOWN The initial position is saved and the callback listener is invoked,
informing the base component that the input has started.

ACTION_MOVE When the user starts moving the view, the current corner index is
resolved by the CornerHelper class. This means, the screen coordinates are mapped
to an index, ranging from 0-3, for each of the four corners. Then, every newly visited

3 Implementation 3.6.2 Current Implementation: Invisible Pattern Unlock 39

corner’s index is saved in a list. Additionally, the base component is informed about
the code input progress.

ACTION_UP Upon input termination, the original position of the overlay is restored.
Additionally, the list of visited corners is sent to the base component, before clearing
it for new attempts.

After DueProcessDeviceAdminReceiver has initialized the pattern unlock sys-
tem, the user currently has 30 seconds to finish the pattern input before the overlay
is removed. The class implements the callback listener’s method to be informed
when the user has finished drawing the pattern. Here, a kind of tarpit comes into
play: If code input is failed for three or more consecutive times, the system stops to
listen for new attempts for 10 seconds times the failed attempts. This means, after
three fails, for 30 seconds any further attempt will be ignored. After four fails 40
seconds, five fails, 50 seconds - and so on. The next possible unlock attempt time is
persisted by AppSettings, so this cannot be circumvented by simply restarting the
process. Furthermore, an adversarial change of Android’s system time to bypass the
tarpit is currently handled by the admin receiver listening for the system broadcast
ACTION_TIME_CHANGED.
If the correct pattern is drawn, the attempt counter and time is reset, the overlay
is cleared and the recovery actions are executed.

Custom Lockscreen

If the management app is launched or resumed, it will always show the custom
lockscreen, the LockscreenFragment. This is just a generic white surface, where
a user configurable decoy message can be displayed. Additionally, it initializes the
same PatternUnlock overlay on top of it. To enter the application, the user has to
draw the correct pattern. By using the same method here for the app lockscreen as
well as for the lockdown recovery, helps to remind and train the user.

Implementing an application lockscreen requires careful considerations. As the
MainActivity controls the flow of the app, it ensures that the lockscreen is always
shown as soon as the activity is created, paused or resumed. Moreover, interaction
with other activities like the CodeConfigActivity has to be taken into account.

When the app is put into the background, MainActivity’s onPause() method is
called. To protect all sensitive user interfaces from prying eyes in Android’s recent
app overview, the WindowManager’s FLAG_SECURE is set. This prevents the window
to be shown on non-secure displays, like the recent app overview [37].
If the user is switching to a trusted activity, like the CodeConfigActivity, onPause()
is called as well, but no further steps are taken. Otherwise, the current fragment is
replaced by the LockscreenFragment, but no pattern unlock overlay is initiated.

3 Implementation 3.6.3 Recovery Actions 40

When the app is resumed and onResume()) is called, the FLAG_SECURE is cleared
to enable screenshots inside the app. If the user is coming from a trusted activ-
ity, like the CodeConfigActivity, no further steps are taken – this means, the
original fragment remains, e.g. the ConfigFragment. Otherwise, the Lockscreen-
Fragment including the pattern unlock overlay is displayed. To prevent a bypass of
the lockscreen with Android’s back navigation, the back stack is cleared.

If the user backgrounds the CodeConfigActivity, its onPause() method is
called. Here, the activity is finished and its result code is set to an unsuccessful
value. The result code is processed by the MainActivity and resets the request
code. This makes sure that a later resumption is not coming from a trusted activity
and the lockscreen is shown.

Configuration

The third component employing the pattern unlock system is the CodeConfig-
Activity, which can be started from the IntroActivity or the ConfigFragment.
It allows the user to configure their secret pattern.
The initialization is a little bit different here. Normally, only one overlay view in the
starting corner is created, but for configuration, four overlays have to be created,
each in one corner. To help the user find the possible starting points for the pattern,
the four views are temporarily made visible with a pulsing animation. The activity
implements the callback listener’s methods as well. When the user starts to draw the
pattern, helpful tips are shown based on the input progress. After two consecutive
and identically drawn patterns, the new unlock secret is stored. Currently, a pattern
with a minimum of four corners is enforced. This results in at least 4 ∗ 3n−1 = 108
unique combinations, where n is the number of points included in the pattern (in
this case 4).

3.6.3 Recovery Actions

Ending lockdown may be initiated in two ways: First, if the management app’s icon
was hidden, it will be carried out after the user performs the recovery procedure as
described in section 3.6.2. Second, if the management app is left accessible and the
user unlocks the custom lockscreen, the recovery actions are executed as well.

Recovering from lockdown essentially means reverting the actions of lockdown
mode. The HidingUtil offers a convenience function for this. First, the Google Play
Services app is unhidden again, so the Google Account works again. The content
provider packages are unhidden as well. Next, all restrictive policies are cleared by
the device policy manager and the original grant states of storage permissions are
restored. Biometric authentication is enabled again. If the user has configured it
before, the marked sensitive and now hidden apps are shown again in the launcher.

4
Usage

A key goal when implementing Due Process was to create the most user-friendly
system possible. Due to the delicate aspects and critical requirements of the system,
this was not an easy task. This chapter describes the functionality of Due Process
out of the user’s perspective and goes through every single use case and scenario.
Moreover, particular adjustments to the user interface (UI) based on results of early
usability experiments are detailed.

4.1 Installation

To make the system easily accessible from an Android device, it can be downloaded
and installed like any conventional app, e.g. from a public repository like the Google
Play Store. Unfortunately, this makes it possible to link the app’s usage to the user,
if it is downloaded with the user’s personal Google account for example.

Therefore, to provide anonymity and additional plausibility, the application and
its source code should also be hosted publicly on the Internet. On the one hand,
this enables users to perform downloads without attribution to their person. On the
other hand, it allows users to review the source code and make some changes to it
that can further increase plausible deniability. After that, the application package
has to be built from the code. The recommended changes are:

• Change package name of application. This requires software that allows au-
tomatic refactoring of source code to be efficient.

• Change label of application and labels of activity. This can be achieved by
changing the strings inside the app’s manifest.

• Change admin receiver’s label. This can also be changed in the manifest.

• Change app icon. The drawable defined in ic_app.xml needs to be exchanged.

42

4 Usage 4.2. Setup 43

Altering these and obfuscating the code before building a unique APK can signifi-
cantly improve plausibility when facing [T1]-[T3]. However, this process is not user
friendly as it requires a computer and technical expertise. Since all of the listed
steps could be automated, requiring the user only to provide some decoy strings and
an app icon, the process could be greatly simplified. This could be achieved with a
web application, where the user inputs all of the decoy information. The server then
creates a unique application package, tailored to the user and offers it to download.
All of this could be accomplished from a mobile web browser, making a computer
unnecessary.

4.2 Setup

Once installed, the setup can be started. The initial screen shows a short explanation
with a Continue button, which starts the provisioning process. If a work profile
already exists, the user will be prompted to delete it or cancel provisioning. During
the profile setup, Android shows multiple educational screens regarding the basic
usage of work profiles. After successful provisioning, it returns to the second and
last screen of the setup UI. Here, some more text explains how Due Process
incorporates the work profile functionality. Figure 4.1 shows the sequence of screens.

Figure 4.1: Setup UI flow

The Switch to work profile button conveniently transfers the user to the app
inside the work profile, where all further introduction and configuration will take
place.

4 Usage 4.3. Introduction 44

4.3 Introduction

The introduction UI is based on multiple sliding screens and acts both as guide and
configuration sequence. It was designed to educate the user with small pieces of
information, moving forward step by step at the user’s own pace. It also includes
some fundamental configuration slides, which can only be progressed from when
the user performed the requested actions. The figure below depicts the first two
slides. Here, the visual differences between work and personal apps are introduced.
Right after that, the separate lockscreen challenge has to be configured. The figure
includes the second slide before and after this required configuration step.

Figure 4.2: The first two intro slides

The next four slides introduce lockdown. The first of them displays its identifying
icon. Then, management of apps, triggering lockdown and the optional deactivation
of the management app are explained as well.

4 Usage 4.3. Introduction 45

Figure 4.3: Slides explaining lockdown

After the user is educated about lockdown, we can demonstrate how to end
lockdown mode. Here, the invisible, secret lockscreen is mentioned the first time.
This slide contains critical information, if users skip or are unable to understand, it
could lead to usability issues.

Figure 4.4: Slide explaining recovery from lockdown

In preparation of setting up the secret lockscreen, we can now ask the user to
grant the permission to display on top of other apps. As this is a special access
permission, we have to transfer the user into the corresponding settings screen,
where the switch has to be activated. Only if this is done, the user may proceed.

4 Usage 4.3. Introduction 46

Figure 4.5: Overlay permission granting flow

Finally, the secret lockscreen can be configured. For this, the designated config-
uration activity is started. Upon opening it, the available starting points for the
pattern are temporarily indicated with a pulsing animation. The user then has to
draw the pattern including one repetition and consisting of at least four points. The
pulsing animation can be re-enabled with a button.

Figure 4.6: Secret lockscreen setup flow

4 Usage 4.4. Management 47

This concludes the introduction process and after the user taps done, the custom
lockscreen is shown for the first time. Usually, this lockscreen only displays a con-
figurable decoy message. Early experiments with users have revealed that this can
be confusing, therefore it now presents a one time clarification message.

Figure 4.7: Final slide and first time secret lockscreen

At some point during the introduction, a notification will be sent to the user
from the app’s instance in the personal profile. It reminds and prompts the user
to uninstall the setup application, as it is no longer needed and deleting it avoids
adversarial analysis.

4.4 Management

Whenever the management UI is started or resumed from the background, the cus-
tom lockscreen is shown and the secret pattern has to be solved. Inside the actual
app, a bottom navigation bar lets the user open the three main UIs: Manage Apps,
Lockdown and Settings (see figure 4.8, from left to right). For each app installed
in the work profile, there are two controls: First, a toggle button which indicates
and changes whether an app is currently hidden or not. Second, a switch, which
indicates and changes whether an app is marked sensitive and will be hidden when
lockdown is activated. As visible in the screenshot, the Google Play Store has been
marked sensitive, which it is by default. The main colors chosen for the app were
red and green. Early versions of the application had green color indicating hidden

4 Usage 4.4. Management 48

(enabled the system’s hiding mechanism) and sensitive states (will enable the sys-
tem’s hiding mechanism). From the user’s perspective however, this was perceived
differently and created confusion in experiments: Green was associated with app is
accessible/usable and everything is okay. For the user, lockdown and ”hidden” was
not the positive/green state, for the developer it was, since it enabled the system.
This was adjusted in favor of usability.

Figure 4.8: The three main screens

The lockdown and wipe buttons were designed to allow for quick activation of the
respective feature. To avoid accidental actuation, tapping and holding is necessary,
supporting the user with small animation cues. Furthermore, a button was added
to open the Ending Lockdown slide from the introduction sequence as a reminder.
This was also a result from early user tests.

The Settings allow the user to configure the lockdown and wipe triggers, the ac-
tions performed by lockdown mode, the actions performed when lockdown has ended
and some miscellaneous options. Some of these options have logical dependencies on
other options: The user can choose the threshold for device lockscreen fails with two
seek bars, which logically depend on each other because a wipe cannot be triggered
by fewer lockscreen fails than a lockdown. When the user activates Hide launcher
icon of this app in lockdown mode actions, Show launcher icon of this app has to
be activated for the ending lockscreen actions as well.

4 Usage 4.5. Lockdown Recovery 49

Figure 4.9: The rest of available settings

The Evict Encryption key option is disabled by default, refer to section 5.1.1 for
the reasoning behind this decision. The configurable Organization Name is shown
not only on the app’s lockscreen, but also on Android’s work profile lockscreen for
example. The option Manage system apps lets (technical) users disable filtering
of system apps in the Manage apps screen, so apps without a launcher icon can
also be hidden.

4.5 Lockdown Recovery

Ending lockdown and recovery of the management app can be tricky. The invisible
unlocking mechanism is created when the work profile is enabled. The default app
launcher on Pixel devices offers a switch to enable and disable the profile. However,
if all work apps are hidden, the launcher section disappears and so does the switch.
To disable and enable the work profile in this case, the user has two options: Either
with a switch in Android’s system settings, Accounts,Work profile settings or with
a quick settings toggle.

5
Evaluation

In this chapter, we will examine the software’s capabilities in terms of security, plau-
sibility and usability. Some unforeseen issues which came up during implementation
are highlighted in the following sections as well.

5.1 Security & Plausibility Analysis

5.1.1 Key eviction

When the system is switched into deniable mode, the work profile can be made
inaccessible with a lockscreen. The lockNow() method either performs a ”soft lock”
or a ”hard lock”. The first one will keep the encryption key in memory, the second
one will remove it. Once the key is removed, it can only be retrieved again with the
user’s knowledge factor [26]. Assuming the user does not disclose their lockscreen
secret, we compare the two cases:

When we perform key eviction, we win security (confidentiality), especially facing
[T4] and specifically [QS3], because even with direct storage access, the data and
file meta data will stay encrypted. At the same time, we lose some plausibility or
at least raise suspicion against [T1], [QP1] due to a persistent notification, which
cannot be disabled, not even manually by the user.

On the other hand, if the key is not evicted, [T2] would be able to enumerate
the file and directory names inside the work profile. [T3] would be able to do the
same, [T4] could potentially circumvent the permissions enforced by the kernel and
therefore also access the content of files.

The hard lock is more secure but might lead to earlier coercion to disclose the
work profile key anyway. The soft lock is less secure, but more inconspicuous. As
this difficult decision is depending on the actual threat model of the user, it has
been left to the user as a configuration option.

51

5 Evaluation 5.1.2 Forensic Analysis 52

If the user is forced to disclose their secret in either situation and assuming all
work profile applications are hidden, the attack vectors do not really differ from
those of a soft locked profile. Since the attacker cannot install any apps inside of
the profile, the access can only be made from outside, from the personal profile.
Here, the same restrictions apply as if the profile is soft locked. Furthermore, key
eviction is only really guaranteed, if the device has been rebooted and therefore all
memory has been cleared. As most [T4] attacks might involve a reboot, the key will
be evicted in these cases anyways (except for cold boot attacks perhaps).

5.1.2 Forensic Analysis

This section presents the results of a forensic analysis of the system, with the capa-
bilities up to [T3]. Theoretical attack vectors of [T4] are described as well.

The analysis assumes that all apps have been hidden in the work profile and
all identifiers (package name, app labels, icon, etc.) of Due Process have been
changed to inconspicuous elements. The user enabled Google Account removal,
management app hiding and work profile locking.

What [T1] can find

When the device is searched locally by a non-technical user, the first inspection point
will most likely be the app launcher. The default launcher application in Google
Pixel devices has a separate section for work apps, visible in the first two images
of figure 5.1. When all work apps are hidden, the section disappears completely,
effectively hiding the apps and the work profile at first glance (see third image
in figure 5.1). Android’s system settings are more revealing. The existence of a
work profile can be determined in multiple menus. Moreover, a list of all installed
applications is provided, and here the first plausibility issue arises: The primary
user/device owner can always see all apps installed on the system for every user. If
an app is only installed for the work profile and hidden, the app will still be listed
here with a notice saying not installed for this user. This might raise suspicion and
confusion, because another settings screen listing apps specifically installed in the
work profile will not show this entry.
If an app is installed for both the personal and the work profile, the issue is remedied:
The conspicuous entry is overloaded by the app’s instance in the personal profile.
To maximize plausible deniability, the user could install the app for both profiles,
keeping the personal profile’s instance clean or filled with decoy data.

Another problem is used storage: The primary user sees the amount of storage
used by the managed profile, which becomes an issue especially if there is lots of
data stored inside the profile.

5 Evaluation 5.1.2 Forensic Analysis 53

Figure 5.1: Effect of hiding all work apps: Launcher section disappears.

Android will create a notification when an app displays over other apps. The
invisible pattern unlock system will trigger such a notification, which – if disabled
by the user beforehand – is not an issue. Attempts were made to create an intent
during app introduction that opens this specific settings screen for Android system
notifications, but were not successful. It seems that this is not possible anymore in
Android 10, as tests with older versions of Android had shown that it worked at
some point [41].

If the mechanics of Due Process’s invisible pattern unlock system are known
to the adversary – which we have to assume based on the principle of open design –
it would be possible to determine when it becomes active. An adversary would need
to check all four corners after starting the work profile, and if the underlying UI is
not responding to touch input, the initial corner for the user’s pattern is found.

What [T2] can find

An attacker may also install additional apps inside the personal profile. Since instal-
lation of apps from unknown sources is blocked globally in lockdown, the only way
to install apps is the Google Play Store. This reduces the risk of malware installed
by an adversary. Interesting tools for forensic examination could be a file explorer
which allows navigation to the file system’s root directory or a terminal emulator
to run shell commands. Both kinds of applications can be acquired from the Play
Store.

5 Evaluation 5.1.2 Forensic Analysis 54

Using a file explorer, an adversary will not be able to cross the profile boundary
and therefore no interesting things will be found.
If the work profile key is disclosed or not evicted, a terminal emulator can be used
to enumerate userIds of users and file and package names inside the work profile.
Enumeration is possible because the operating system returns distinguishable mes-
sages for existing and non-existent directories.
First, the userId of the work profile is enumerated:
generic_x86:/ $ cd /data/user/
generic_x86:/data/user $ ls 0
ls: 0: Permission denied
1|generic_x86:/data/user $ ls 10
ls: 10: No such file or directory
1|generic_x86:/data/user $ ls 11
ls: 11: Permission denied
1|generic_x86:/data/user $ cd 11
generic_x86:/data/user/11 $

For every user/userId, a directory is created in /data/user/ and as userId 0 is the
primary user, this directory must exist. Regarding the directory permissions, only
the execute bit is set for everyone other than root, so listing the contents is denied.
To find valid userIds, the ls <userId> command can be used, which will return
with Permission denied for existing directories and No such file or directory
for non-existent directories. Since only the execute bit is set for existing sub-folders
as well, we can only enter them, but not list the content. Inside of these directories,
app-private data is stored for every user the app is installed for (/data/user/0/ is
linked to /data/data/, /data/user/11/ contains app data for apps inside the work
profile in this case). So, enumerating installed packages for the work profile works
the same way:
generic_x86:/data/user/11 $ ls
ls: .: Permission denied
1|generic_x86:/data/user/11 $ cd com.nonexistent.app
cd: /data/user/11/com.nonexistent.app: No such file or directory
2|generic_x86:/data/user/11 $ cd com.twitter.android
cd: /data/user/11/com.twitter.android: Permission denied

This way, [T2] can determine which apps in the work profile store data, so a more
definitive assertion than [T1]’s can be made.

Besides determining installed packages, file names can also be enumerated in
/storage/emulated/<userId>/<file-name>.

If the profile key is not disclosed and evicted, enumerating attacks as described
are not possible, because the directory and file names are encrypted. In this case,
Android bug reports – which can be generated on demand – could potentially be
analyzed and may contain indications of Due Process.

5 Evaluation 5.1.2 Forensic Analysis 55

What [T3] can find

Adding a computer to the adversary’s arsenal, more details can be gathered, espe-
cially with adb. The restriction on debugging features for the work profile however,
still prevents the installation of further software. All enumeration attacks described
above are possible via adb shell as well if the work profile is unlocked or soft locked.
If the profile key is evicted and not disclosed, system logs could be examined when
logcat is used, which may contain traces of e.g. Due Process’s behavior, if a
dump of the logs is retrieved early after lockdown before they are overwritten by
more recent logs. Analyzing log output makes it possible to fingerprint any appli-
cation’s behavior, even with altered package names.

ADB also allows listing all users present:

$ adb shell pm list users
Users:

UserInfo{0:Owner:13} running
UserInfo{10:Managed Profile:30} running

In this case, the work profile has uid 10. Even more info on users can be retrieved:

$ adb shell dumpsys user
Current user: 0
Users:

UserInfo{0:null:13} serialNo=0 isPrimary=true
Flags: 19 (ADMIN|INITIALIZED|PRIMARY)
State: RUNNING_UNLOCKED

[...]
Effective restrictions:

no_install_unknown_sources_globally
UserInfo{10:Managed Profile:30} serialNo=65 isPrimary=false

Flags: 48 (INITIALIZED|MANAGED_PROFILE)
State: RUNNING_LOCKED
Created: +2d2h23m50s496ms ago
Last logged in: +1h18m16s716ms ago
Last logged in fingerprint: google/walleye/walleye:10/QQ2A

.200501.001.B3/6396602:user/release-keys
Start time: +1h17m39s598ms ago
Unlock time: <unknown>
Has profile owner: true
Restrictions:

no_wallpaper
Device policy global restrictions:

no_install_unknown_sources_globally
Device policy local restrictions:

no_install_apps
no_unified_password

5 Evaluation 5.1.2 Forensic Analysis 56

no_control_apps
no_bluetooth_sharing
no_sharing_into_profile
no_install_unknown_sources
no_cross_profile_copy_paste
no_debugging_features

Effective restrictions:
no_install_apps
no_unified_password
no_control_apps
no_install_unknown_sources_globally
no_bluetooth_sharing
no_wallpaper
no_sharing_into_profile
no_install_unknown_sources
no_cross_profile_copy_paste
no_debugging_features

[...]
Recently removed userIds: [12]
Started users state: {0=3, 10=1}

[...]

This reveals all kinds of details about the work profile, including the hardening
restrictions. Based on this unique set of restrictions, an adversary could conclude
that Due Process is indeed the profile owner. Recently removed userIds are
also listed, which could raise questions if a wipe was performed, but as there is no
timestamp, this is rather unlikely.

Information on all installed applications can be gathered with the following com-
mand:

$ adb shell dumpsys package packages
Packages:
[...]

Package [org.thoughtcrime.securesms] (6a0c279):
userId=10216
dataDir=/data/user/0/org.thoughtcrime.securesms

[...]
timeStamp=2020-05-23 20:21:22
firstInstallTime=2020-05-23 20:21:26
lastUpdateTime=2020-05-23 20:21:26
installerPackageName=com.google.android.packageinstaller
signatures=PackageSignatures{a93836c version:3, signatures:[46

ed1dfa], past signatures:[]}
[...]

User 0: ceDataInode=0 installed=false hidden=false suspended=
false stopped=true notLaunched=true enabled=0 instant=false

5 Evaluation 5.1.2 Forensic Analysis 57

virtual=false
gids=[3002, 3003]

[...]
User 10: ceDataInode=1573040 installed=true hidden=true suspended

=false stopped=false notLaunched=false enabled=0 instant=false
virtual=false

[...]

Here, it becomes obvious that the Signal messsenger app (package org.thoughtcrime-
.securesms) is installed only for the work profile and is currently hidden.

Assuming the management app was not hidden, it would be possible to use
Android Device Monitor or Android Studio’s Layout Inspector to analyze the app’s
view hierarchy [42]. This reveals the resource-id of the decoy label shown on the
app’s lockscreen, which affirms that thorough obfuscation is definitely necessary.
Another important factor is that Due Process is properly signed and not a debug

Figure 5.2: UI dump with Android Device Monitor

build, and backup is disallowed in the manifest, so app-private data like shared
preferences can not be extracted.

5 Evaluation 5.1.3 Security States 58

What [T4] can find

If an adversary manages to root the device, our device integrity assumptions do not
hold anymore. In this case, the attacker can escape Android’s sandbox and is not
limited by directory permissions anymore.
If the profile key is not evicted or disclosed by the victim, everything stored in the
work profile can be accessed.
If the profile key is evicted and not disclosed, confidentiality of data is given, but
the existence of data is not plausibly deniable.

5.1.3 Security States

As described in 2.2.1, mobile operating systems currently provide only binary secu-
rity states – locked or unlocked. The state diagram in figure 6.2 depicts these two
states, where the state designator symbol indicates the current lock state {L;U} of
the device lockscreen. Locked is symbolized by L, while U represents an unlocked
state. The edges are labeled with actions which trigger state transitions.

Figure 5.3: Diagram of standard security states

The diagram in figure 5.4 illustrates how Due Process introduces further secu-
rity states. Here, a state is designated by four symbols, S1S2S3S4 where position 1
to 4 denote the lock state {L;U} for the following security boundaries:

1. Device (boundary enforced by lockscreen)
2. Profile (boundary enforced by lockscreen)
3. Lockdown (boundary enforced by invisible management app recovery lockscreen)
4. Management app (boundary enforced by lockscreen)

Note that the following diagram only considers the base case, with the default lock-
down behaviour. The user may change certain options concerning lockdown and
lockdown recovery, which would result in a different state diagram.

5 Evaluation 5.1.3 Security States 59

Figure 5.4: Diagram of security states with Due Process

When lockdown was activated, the following states have to be traversed in order
to access hidden sensitive applications:

1. LLLL (Device locked in lockdown): Everything is inaccessible.

2. ULLL (Unlocked device lockscreen/personal profile): Work profile is inacces-
sible.

3. UULL (Unlocked work profile): The management app and hidden apps are
inaccessible.

4. UUUL (Unlocked lockdown mode): The management app icon is now visible,
but the app is locked, so hidden apps are still inaccessible.

5. UUUU (Unlocked management app): Everything is accessible and sensitive
apps can be unhidden.

Regarding the security boundaries in terms of separate knowledge factors, three
user provided secrets are involved, since the secrets for recovery of the management
app and the app itself are the same:

1. Device lockscreen secret (PIN/pattern/password)

2. Work profile lockscreen (PIN/pattern/password)

3. Due Process app recovery and app lockscreen (pattern)

5 Evaluation 5.1.4 Plausible Deniability Effectiveness 60

5.1.4 Plausible Deniability Effectiveness

Clearly, the system has limitations that decrease plausibility when a user wants do
deny the existence of a specific application on the device. So the system is not
ideal, considering the definition for ideal plausibility (section 2.1.4). Regarding the
requirements for effective plausibility (section 2.1.4), the location of random data is
bound to the work profile’s context. Therefore, the existence of random data can be
explained by claiming something along the lines of ”I use this work profile for work.”.
When a DPC is deployed for the purposes of actual mobile device management,
companies could leverage the mechanics of our system to protect company secrets
under the given threat model.

5.1.5 Adversary Simulation

In addition to our theoretical and experimental security analysis, a simulation of real
attacks on the system was performed. As genuine threat scenarios as defined by our
threat model are not common enough for a real world study, these situations had to
be simulated. To achieve this, some participants of the usability study were handed
a device with the system in lockdown mode. This was done before the usability part
of the study. Based on self-reporting concerning their technical knowledge about
Android, they were then classified according to the threat model.

The device had a specific app installed inside the work profile, and this app was
hidden by lockdown mode. The subject was asked to search the device for this
specific application with all possible means without breaking the hardware. Two
participants classified as [T1] performed the search, where one of them managed to
find the mentioned not installed for this user message for the target app in Android
settings. This raised doubts, but no conclusive statement about the existence of the
app could be made. Two other participants with [T3]-level skills, who also searched
the device, were able to use the described adb commands after some research, which
increased their confidence that the app was installed. The inaccessibility of the app
raised both suspicion and doubts at the same time. None of the participants were
able to launch the application or retrieve any confidential data (besides meta data).
As expected, these results are in line with the outcome of our forensic analysis.

The typical inspection points by all participants were as follows:
• Home screen and list of apps in launcher

• Google Play Store, installed applications

• System settings, listing of installed apps

• File explorer applications

• System settings, listing of accounts

• Work profile settings, work profile lockscreen

5 Evaluation 5.2. Usability Study 61

5.2 Usability Study

The study was conducted to recognize problems in usability. In case of Due Pro-
cess, usability problems could lead to serious security and plausibility problems.
The following problems could arise:

1. Users do not follow the setup and introduction process until the end, leading
to frustration.

2. Users do not understand the need for the separate lockscreen for the work
profile.

3. Users do not understand the need for the secret lockscreen.

4. Users do not understand how to setup the secret lockscreen.

5. Users finish the setup, but are unable to use the management app, e.g. because
of the secret lockscreen.

6. Users do not understand how to use the switches and toggles in the Manage
Apps screen.

7. Users do not understand how to install an app inside the work profile.

8. Users have difficulties configuring particular settings.

9. Users fail to trigger lockdown when it is necessary.

10. Users fail to trigger a wipe when it is necessary.

11. Users lock themselves out after a lockdown because they cannot recover the
management app.

The secret lockscreen is one of the most critical parts of the user experience. If users
fail to understand how the lockscreen works, they cannot use the management app.
This issue could arise directly after finishing the introduction activity, when they
need to use it for the first time. Later, when a lockdown has been triggered and the
management app was hidden, they could either have forgotten how it works or still
fail because of bad timing.

5.2.1 Pre-Test Questionnaire

Before the tests were started, the following information was documented for each
subject with this questionnaire:

1. Experience with Android in general: I have been using Android for m months.

5 Evaluation 5.2.2 Scenarios and Tasks 62

2. Experience with Android work profiles: I know what a work profile is. (true/false)
If true: I have used a work profile in the past. (true/false)

3. Expertise in computer science in general: Rate your expertise in computer
science on a scale of 1-10. 1 = I have no technical knowledge at all; 10 = I am
a computer scientist with extensive experience; (1− 10)

4. Expertise with computer security: Rate your expertise in computer security
on a scale of 1-10. 1 = I have no security knowledge at all; 10 = I am a
computer scientist with specialization in security; (1− 10)

5. I know how to install applications from “unknown sources” (other than the
Google Play Store) on an Android device. (true/false)

6. I know how to use the adb command line tool. (true/false)

7. I know the concept of plausible deniability. (true/false)

8. I have used a system enabling plausible deniability (e.g. True Crypt’s hidden
container) in the past. (true/false)

5.2.2 Scenarios and Tasks

The user study put the users in a scenario with three consecutive situations described
in the following sections.

The Scenario

Imagine you are an investigative journalist, dealing with highly sensitive information.
You are going to fly to another country and meet a whistleblower, who will hand over
lots of sensitive data. The fact that you communicate with this person and all the
provided data have to be kept a secret under all circumstances. You use the following
apps on your Android smartphone to communicate and store sensitive data: Gmail,
Contacts and Files. The device is protected by a PIN which is only known to you.
However, you fear that you will be asked to unlock your phone at the border, either
when entering the foreign country or on your return home.

Situation One: Preparation

When looking for a solution, you came across an app called Due Process, which
should enable you to hide the sensitive apps on your phone. You downloaded and
installed the app on your phone and are now going to set it up according to the
threat described. Make sure that Gmail, Contacts and Files will be protected in case
of coercion. For now, these apps should stay accessible, but be prepared for sudden

5 Evaluation 5.2.2 Scenarios and Tasks 63

interrogations in the future. Take your time and make yourself familiar with the
application and its features.

Situation Two: Coercion

You have landed at the airport and are in line for the passport checkpoint to formally
enter the country. You already feel watched by the security personnel and now fully
expect to be taken aside, interrogated and searched. You might be asked to unlock
your device or disclose your PIN to the border agent. You have to avoid looking
suspicious now, so you cannot risk opening any sensitive apps (Due Process is
one of them!). The sensitive data and apps on your phone have to kept confidential
under all circumstances.

Situation Three: Recovery

You successfully entered the country and have arrived in a safe environment. Send
an email with Gmail to your contact, the whistleblower.

Tasks

The following tasks result from the scenarios, which should be derived by the users
implicitly.

1. Peform the setup.

2. Unlock the management app.

3. Delete the setup app in the personal profile.

4. Mark Gmail, Contacts & Files app as sensitive.

5. Configure a lockdown trigger in Settings.

6. Trigger lockdown, which should hide all sensitive apps and the management
app.

7. Recover the management app.

8. Unhide Gmail.

5 Evaluation 5.2.3 Results 64

5.2.3 Results

The study had 6 participants with varying levels of skill and knowledge about plau-
sible deniability and computer science in general. The participants have been using
Android for 73 months on average. Half of the participants knew what a work profile
is, and only one has used it in the past. The self reported average expertise in com-
puter science was 6 (on a scale of one to ten). The average security expertise was
4.16 (on a scale of one to ten). Half of them knew how to install apps from unknown
sources, only 2 of 6 were familiar with adb. The concept of plausible deniability was
known to all but one participant, but only 2 have used software in this context. The
general lack of knowledge about adb makes it clear that an approach involving adb
– like a device owner DPC or custom rom installation – might not be user friendly.

On average, 6.6 of 8 tasks could be completed without any support or interven-
tion. Only one participant was able to perform all tasks without any difficulties.
Tasks 1,2,4,6 and 8 posed no problems for anyone. One third forgot about deleting
the setup app in the preparation situation (task 3), because they did not spot the
notification that prompts the uninstall. One participant was slightly confused with
task 5, how to set a trigger for lockdown in the settings. The most serious problem
manifested in task 7, which all but one participant struggled with: Recovering the
management app after lockdown was triggered. One participant completely forgot
how to initiate the recovery process (turning the work profile on and off again), but
was able complete it after she was reminded of the first step. The rest of the partici-
pants remembered the three steps, but had trouble with timing. Most of them drew
the pattern too early, some then completed them either by luck or after a small hint
at the correct timing.
With small hints, all participants were able to eventually complete all tasks.

Besides completion of tasks, other little problems were observed as well: Two
participants expressed their lack of understanding for the wipe function, which might
stem from insufficient explanation during introduction. Most participants needed
help finding the work profile apps in the launcher, two participants were surprised
that now two instances of the apps existed. During Android’s PIN/pattern/password
setup sequence for the secondary lockscreen challenge, most found it a little bit
confusing that they had to enter their device lockscreen PIN first, before actually
configuring the profile lockscreen.

The general feedback was positive and no one reported frustration after comple-
tion of the procedure. The application’s visual design was received positively. One
participant recommended an additional video during the introduction that goes
through lockdown recovery. Another participant suggested the use of a screen pop-
up guide during lockdown recovery when lockdown is triggered for the first time.

6
Related Work

Past work and literature describe a variety of approaches for plausible deniability. In
this chapter, notable examples are highlighted, some of which are more theoretical
than others.

6.1 Cryptographic Schemes

A thesis on plausible deniability cannot go without mentioning Canetti et al., who
describe the concept of deniable encryption in great detail for the first time in 1997
[4]. Their paper is quoted by most work in this field. For example, in [16], the
authors state that the encryption scheme of Canetti et al. is insufficient, because its
only purpose is deniable encryption, which would immediately indicate that there
is a hidden message when using it. This is a core problem of all systems enabling
plausible deniability. Therefore, Klonowski et al. show fairly practical approaches of
deniable encryption which modify existing and widely known conventional encryp-
tion schemes. These small modifications then allow hiding a secret message. One
example is the asymmetric ElGamal cryptosystem, where the modified variant even
provides ideal plausibility [16].

6.1.1 TrueCrypt

TrueCrypt is a popular and classic open source desktop software that offers on-the-
fly-encryption and has the ability to create deniable hidden volumes as described
in section 2.1.4. The project’s development has ceased in 2014, but since then, new
derivatives (e.g. VeraCrypt) have been initiated. These succeeding projects have
similar features, so we will describe them based on the original TrueCrypt software.
These hidden volumes are not mandatory but an optional feature – therefore they
are deniable [24]. A volume is an encrypted file on a storage medium that can be
decrypted and mounted as a virtual drive.

66

6 Related Work 6.2. Approaches on Mobile OS 67

TrueCrypt’s regular encrypted volumes are containers stored as a file on top of a
regular file system (e.g. /home/user/containerFile). It is also possible to encrypt
a whole dedicated disk partition. Both are referred to as a TrueCrypt container [15].
These containers allocate a predefined amount of space and the free space is filled
with random data. To decrypt containers, a passphrase (and optionally a key file)
is provided by the user. Standard volumes do not support plausible deniability.

Hidden volumes are stored inside a standard TruCrypt volume. From outside, it
is not discernible if a standard volume without or a volume with a hidden container
inside is present. The hidden volume is stored in the free space of the regular volume,
space that is usually filled with random data [15]. The container can be opened by
entering either the key for the outter, regular volume or the key for the inner, hidden
volume.

Figure 6.1: Standard volumes with and without a hidden container [15]

TrueCrypt does not fulfill the notion of ideal plausibility due to unreferenced
random data, but it can be regarded as quite effective.

Deniable encryption solutions like TrueCrypt only target desktop operating sys-
tems.

6.2 Approaches on Mobile OS

The special architecture of mobile operating system poses particular requirements
for systems enabling plausible deniability. We will look at two categories of related
work: customized AOSP and app-based approaches.

6 Related Work 6.2.1 Customized AOSP 68

6.2.1 Customized AOSP

Regarding modified versions of Android, there exist multiple excellent concepts and
proof-of-concept implementations [43][44][45], however they all have complicated
setup processes, so they do not fulfill our usability requirements. Furthermore,
since they are based on a modified version of the Android Open Source Project
(AOSP), continuous maintenance is hard. The authors therefore state that their
implementation would have to be merged into the offical AOSP code or some other
popular custom Android project [43].

MobiFlage [43], MobiHydra [44] and MobiPluto [45] are all modified versions of
AOSP and were developed in this order, so each system improves on some aspects
of the predecessor(s). They allow users to hide data in several hidden volumes,
providing plausible deniability. They support multiple, user-controllable deniability
levels, which is achieved by choosing the number of hidden volumes during setup
[45]. When the system boots, the user chooses the volume by entering either a public
decoy password or a private, hidden password. Then, an offset is derived from the
password and the respective volume is mounted onto the file system mount point.
The hidden volumes are located in the empty space of the device’s storage. When
empty space is encrypted, high entropy data is produced, so the hidden volumes are
filled with random data to make them indistinguishable [44]. The basic concept of
hidden volumes is comparable to the one of TrueCrypt.

Figure 6.2: Storage layout of MobiPluto [45]

To switch between sensitive mode and normal operation, a reboot of the device
is always necessary, which does not contribute towards usability. Moreover, if a user
is apprehended with the device in sensitive mode, plausible deniability is not given.
Furthermore, the normal, public storage spaces have to be used regularly, otherwise
they might not convince an adversary when the data is old and makes the obvious
impression of ’dummy data’.

6 Related Work 6.2.2 Mobile Apps 69

6.2.2 Mobile Apps

There are already some apps in the Play Store that use the Device Policy Manager
and work profiles to isolate, freeze and hide apps [46][47]. They are not designed
with plausible deniability in mind, because everyone with access to the unlocked
device could simply use the app themselves to unhide apps. These solutions are
rather a way of separating apps from the rest of your personal apps, run a second
instance of an app (e.g. for two different accounts), or freeze background-heavy apps
[46].

One recent addition was released in fall 2019, called BatApps [48], which has a
similar use case like Due Process. BatApps uses the work profile to store and hide
private apps, and disguises itself as a calculator app to enable plausible deniability.
When the user enters the correct PIN into the calculator, the hidden apps are
revealed. Some features are only available after an in-app purchases, like the fake
calculator feature or if more then three apps should be installed in the profile.
In our short analysis some flaws concerning security and plausible deniability have
been determined: First, all of the functionality is controlled from the app’s instance
in the main profile. This means, an adversary can immediately observe the existence
of the application on the system. This also enables an attacker to analyze the
application package, since installed APKs of the personal profile are all accessible
and can be copied to a computer. The second flaw is that the work profile is not
secured with a separate lockscreen challenge, so the data is encrypted with the same
user provided secret from the personal profile. In face of [T4], the data inside of
the profile could potentially be decrypted. Another plausibility flaw arises if the
calculator disguise feature is used, since at the same time, the app is shown as the
work profile owner, which will potentially raise suspicion.
Furthermore, the lack of inconspicuous methods of triggering deniable mode is a
small functional deficit compared to Due Process.

7
Future Work and Summary

This chapter describes potential future improvements and advancements of Due
Process. Afterwards, a summary concludes this thesis.

7.1 Future Work

Due Process can be developed further in various spots. We will discuss two areas
of development: Improvements and changes that concern Due Process on the
application layer, and changes out of the app’s scope, like AOSP modifications.

7.1.1 Improving the App

The user study revealed some issues in usability, which could be dealt with in mul-
tiple ways. First and foremost, the lockdown recovery procedure has to improved.
Due its nature, being invisible and giving no feedback to the user during interac-
tion, it proved to be the most problematic part of Due Process’s user experience
(UX). Of the three steps (turn profile off and on, wait a couple of seconds, draw the
pattern), the second creates most confusion, since users do not know when to start
drawing the pattern. After the user turns on the profile, Android takes some time
to ”boot” the profile, and then sends a broadcast which initiates the pattern unlock
overlay. This unfortunate delay cannot be influenced by our application.
We currently see two approaches to correct this issue. As one study participant sug-
gested, a short video could additionally visualize the recovery process during app
introduction. Another user recommended a tutorial with small screen pop-ups that
guides the user through the process the first time. This is a promising idea and
compared to the video, it lets the user try it in a learning-by-doing style. Of course,
this is only slightly mitigating the obvious, inherent UX issues of the current lock-
down recovery implementation. In real world usage scenarios, lockdown might be
triggered rarely on special occasions and only in long time intervals. This increases
the risk that users have already forgotten the procedure again. Besides the usability

71

7 Future Work and Summary 7.1.1 Improving the App 72

deficits of the current recovery implementation, plausible deniability may suffer if
Android’s system notification for displaying over other apps is not disabled by the
user. Therefore, a completely different way of recovering from lockdown could be
implemented. One option could be the introduction of a remote controller. The
idea is that the app connects to a remote server over the Internet, which controls
the DPC on the device. The user then logs into the controller software on the server
(e.g. a web application) and sends a command to end lockdown to the device. This
remote controller could also be used to remotely wipe the work profile or remotely
trigger lockdown. This approach adds quite some technical complexity which contra-
dicts the principle of keeping the design as simple and small as possible (economy of
mechanism) [13]. The original goal for Due Process was to create an autonomous,
device only solution. If the DPC starts communicating over the network, many more
attack vectors have to be considered, e.g. we have to include a threat actor capable
of having full control over the network infrastructure. Furthermore, a user would
be unable to unlock the system without network access. A possible leak of informa-
tion could also be the browser history of the user if it includes past requests to the
controller web application.

In section 4.1, we mentioned a web application that generates a unique APK for
the user before installing Due Process. The development of such a service could
mitigate some plausibility issues that indicate the usage of our app.

Android R developer preview 3 brought some interesting additions to the device
policy manager API, e.g. a feature called ”secondary lockscreen”. Unfortunately,
this has been removed in developer preview 4 [49]. The suspected use case for
this would be that the device policy controller can implement its own work profile
lockscreen, replacing the system lockscreen. If this is indeed the case, it may be
possible to replace the current invisible overlay lockscreen with this. It could act as
the official lockscreen for the work profile, which unlocks the profile when a ”public”
key is entered, and additionally ends lockdown mode when a secondary, secret key
is entered. This would greatly improve the usability of our system.

During initial provisioning, Android shows some educational screens about the
work profile by default. These could be replaced by our own educational screens
that explain our special usage of the work profile feature [26]. For this, the flag
EXTRA_PROVISIONING_SKIP_EDUCATION_SCREENS needs to be set when provisioning
is started.

The application stores the user’s settings and authentication secret for the unlock
pattern in shared preferences inside the app-private data directory. In the current
implementation, this is stored in plaintext. If [T4] gains access to the configuration
files, the list of apps marked sensitive and the pattern unlock sequence would be
exposed. Following best practices for secure app development, this information
should be encrypted [50]. Concerning security and plausible deniability otherwise,
the possibilities seem exhausted with our app-based approach currently.

7 Future Work and Summary 7.1.2 Modifying AOSP 73

7.1.2 Modifying AOSP

In this section, we will go over some potential changes to AOSP that would improve
our system.

During initialization, when provisioning is complete, the DPC makes a call to
setProfileEnabled(componentName), which enables the work profile. This call
is not reversible and the only action that comes close is deleting the profile. In
case of lockdown, this is obviously not desirable. If there was the option for a profile
owner to temporarily disable a work profile, which would remove most of the related
settings and UI, this would greatly help with plausible deniability.

As adb command output currently leaks most information countering plausible
deniability, a good way of alleviating this would be allowing a profile owner to
restrict USB debugging features globally and not only for the profile. To prevent
the analysis of logcat output and bugreports, a strict separation of logs between
profiles could be introduced.

Profile key eviction is currently accompanied with a persistent system notifica-
tion, with no way of removing or disabling it. For normal use cases, notifying the
user about this makes sense, since the (background) functionality of apps inside
the profile is limited in this state. However, for our purposes it would help if the
behavior of this notification was at least user controllable. When the user attempts
to disable it, Android shows a message that it is impossible to disable notifications
from ”your IT admin”. More granular control of notifications related to the profile
admin would be appreciated.

To simplify the lockdown recovery process to some degree, it would be useful if
a profile owner can make calls to the UserManager’s method requestQuietMode-
Enabled(). At this time, only apps which are a foreground default launcher or apps
with permissions MANAGE_USERS or MODIFY_QUIET_MODE are allowed to execute this
[30]. Both of these permissions are signature platform permissions which would
require our app to be signed with the same key as the OS.

java.lang.SecurityException: Can't modify quiet mode, caller is
neither foreground default launcher nor has MANAGE_USERS/
MODIFY_QUIET_MODE permission

Requesting quiet mode on lockdown would simplify the first step of our recovery
procedure: The user just needs to turn the work profile on (disable quiet mode),
instead of off and on.

Android 9 introduced its own lockdown feature, which can be activated with a
shortcut in a menu appearing when holding the power button. This lockdown feature
disables biometric authentication for the device lockscreen and hides all notifications.
A great improvement would be if Android sent a system wide broadcast when this

7 Future Work and Summary 7.2. Summary 74

lockdown is activated. Due Process (or any app) could register a receiver for this
broadcast and perform its own lockdown procedures. This could be beneficial to a
variety of applications dealing with sensitive information, assuming the user might
be coerced into unlocking the device at a later point, e.g. logging the user out of an
online session.

In terms of usability, it may be useful if the managed profile was renameable, so
instead of ”work profile”, it could be presented to the user as ”secondary profile”,
”sensitive profile” or ”isolated profile” for use cases like Island or Shelter (see 6.2.2).
This would somewhat rectify the confusion with the term ”work profile” in a non-
work use case. Support for multiple secondary (work) profiles could be valuable for
creating multiple layers of deniability.

Finally, if the suspected secondary lockscreen feature for work profiles mentioned
in section 7.1.1 actually made it to a final release of Android, it would open up new
interesting possibilities.

7.2 Summary

In this thesis, we explored the complex and nuanced topic of plausible deniability.
We analyzed several implementation variants to bring plausible deniability to An-
droid devices in a usable and yet secure way. Following the theoretical analysis,
one approach was implemented, an application named Due Process. The imple-
mentation and usage of this mobile app were described in detail. Then, a thorough
forensic examination of the created system was performed, which revealed some
issues that were not initially anticipated during theoretical analysis. Besides the
technical evaluation, we share the results of a small user study, which highlights the
main usability problems with the current implementation. For comparison, we also
looked at some related work in this problem space. Finally, we described several
ways of improving and advancing the system.

Due to the nuanced nature of plausible deniability, it is difficult to find an ap-
proach that is both practical and (cryptographically) ideal. The feasibility of systems
in this context often only comes to light after implementation. The approach we
implemented does not fulfill the notion of ideal plausibility. However, we attempted
to create a system that is as effective as possible, without lowering our demands for
good usability too much. With some adjustments – which are mostly out of our
sphere of influence – the concept could be leveraged to a powerful solution.
Nevertheless, one fact can never be eliminated, even with cryptographically ideal
systems: Competent adversaries observing the mathematical possibility of hidden
data could always assume that it has been employed.

The subject matter is interesting not only in respect of technical feasibility but
also in terms of the societal and political reality we live in. Plausible deniability

7 Future Work and Summary 7.2. Summary 75

raises ethical questions, as it can be used for both good and evil purposes. Kaufman
et al. state that whenever the term plausible deniability comes up, the person in
question is almost certainly guilty [3]. Ragnarsson et al. conclude in [5]: ”[...] as
a society making laws, we have to decide whether it is just and desirable to allow
people to keep secrets in their heads, but not on their computers.”

This thesis emerged from a deep desire to protect the fundamental human right
to privacy. Plausible deniability can be an effective way of preserving this right in
certain adverse circumstances.

A
Appendix

77

Bibliography

[1] R. Cormac and R. J. Aldrich, “Grey is the new black: covert action and im-
plausible deniability,” International affairs, vol. 94, no. 3, pp. 477–494, 2018.

[2] D. of State, “National security council directive on office of special
projects (nsc 10/2),” 1948, accessed: 2020-03-29. [Online]. Available:
https://history.state.gov/historicaldocuments/frus1945-50Intel/d292

[3] C. Kaufman, R. Perlman, M. Speciner, and M. Speciner, Network Security:
Private Communication in a Public World, ser. Prentice Hall series in computer
networking and distributed systems. Prentice Hall PTR, 2002.

[4] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable encryption,” in
Annual International Cryptology Conference. Springer, 1997, pp. 90–104.

[5] B. Ragnarsson, G. Toth, H. Bagheri, and W. Minnaard, “Desirable features for
plausibly deniable encryption,” University of Amsterdam, 2012, accessed: 2020-
04-02. [Online]. Available: https://www.os3.nl/_media/2012-2013/courses/
ssn/desirable_features_for_plausibly_deniable_encryption.pdf

[6] A. Hern, “Encryption software truecrypt closes doors in odd circumstances,”
accessed: 2020-03-30. [Online]. Available: https://www.theguardian.com/
technology/2014/may/30/encryption-software-truecrypt-closes-doors

[7] R. McMillan, “Snowden’s crypto software may be tainted forever | wired,” https:
//www.wired.com/2014/05/truecrypt/, (Accessed on 2020-06-04).

[8] J. Granick, “Eff answers your questions about border searches,” 2008, accessed:
2020-04-01. [Online]. Available: https://www.eff.org/de/deeplinks/2008/05/
border-search-answers

[9] S. Cope, A. Kalia, S. Schoen, and A. Schwartz, “Digital privacy at the u.s.
border: Protecting the data on your devices,” 2017, accessed: 2020-04-01.
[Online]. Available: https://www.eff.org/wp/digital-privacy-us-border-2017

[10] “United States of America: Constitution,” United States of America, Septem-
ber 1787.

[11] Merriam-Webster, “Steganography,” 2020, accessed: 2020-04-01. [Online].
Available: https://merriam-webster.com

78

https://history.state.gov/historicaldocuments/frus1945-50Intel/d292
https://www.os3.nl/_media/2012-2013/courses/ssn/desirable_features_for_plausibly_deniable_encryption.pdf
https://www.os3.nl/_media/2012-2013/courses/ssn/desirable_features_for_plausibly_deniable_encryption.pdf
https://www.theguardian.com/technology/2014/may/30/encryption-software-truecrypt-closes-doors
https://www.theguardian.com/technology/2014/may/30/encryption-software-truecrypt-closes-doors
https://www.wired.com/2014/05/truecrypt/
https://www.wired.com/2014/05/truecrypt/
https://www.eff.org/de/deeplinks/2008/05/border-search-answers
https://www.eff.org/de/deeplinks/2008/05/border-search-answers
https://www.eff.org/wp/digital-privacy-us-border-2017
https://merriam-webster.com

BIBLIOGRAPHY BIBLIOGRAPHY 79

[12] J. Scharinger, “Class lecture: Cryptography,” Johannes Kepler University Linz,
2018.

[13] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer
systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[14] J. Aumasson, Serious Cryptography: A Practical Introduction to Modern En-
cryption. No Starch Press, 2017.

[15] “Truecrypt user’s guide, version 7.1a,” 2012, retrieved from software package
TrueCrypt.

[16] M. Klonowski, P. Kubiak, and M. Kutyłowski, “Practical deniable encryption,”
SOFSEM 2008: Theory and Practice of Computer Science, pp. 599–609, 2008.

[17] B. Gründling, “An implementation of ideal deniable encryption,” Bachelor’s
Thesis, Johannes Kepler University Linz, 2018.

[18] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The android
platform security model,” CoRR, vol. abs/1904.05572, 2019. [Online].
Available: http://arxiv.org/abs/1904.05572

[19] R. Mayrhofer, “Class lecture: Android security,” Johannes Kepler University
Linz, 2019.

[20] “Android enterprise security white paper 2019,” 2019.

[21] “Android debug bridge (adb) | android developers,” https://developer.
android.com/studio/command-line/adb, Google, (Accessed on 2020-04-17).

[22] “Support different platform versions | android developers,” https:
//developer.android.com/training/basics/supporting-devices/platforms.html,
Google, (Accessed on 2020-04-07).

[23] “Android compatibility definition document,” https://source.android.com/
compatibility/cdd, Google, (Accessed on 2020-04-07).

[24] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and
B. Schneier, “Defeating encrypted and deniable file systems: Truecrypt v5. 1a
and the case of the tattling os and applications.” in HotSec, 2008, pp. 7:1–7:7.

[25] G. Pandian and V. Gupta, “Perils of running apps in android virtual containers
– android security symposium,” https://android.ins.jku.at/symposium/2020/
program/gautam-arvind-pandian-and-vikas-gupta/, (Accessed on 2020-06-04).

[26] “Devicepolicymanager | android developers,” https://developer.android.
com/reference/android/app/admin/DevicePolicyManager, Google, (Accessed
on 2020-04-15).

[27] “android-testdpc/readme.md at master · googlesamples/android-testdpc,”
https://github.com/googlesamples/android-testdpc/blob/master/README.
md, Google, (Accessed on 2020-04-15).

http://arxiv.org/abs/1904.05572
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://developer.android.com/training/basics/supporting-devices/platforms.html
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://android.ins.jku.at/symposium/2020/program/gautam-arvind-pandian-and-vikas-gupta/
https://android.ins.jku.at/symposium/2020/program/gautam-arvind-pandian-and-vikas-gupta/
https://developer.android.com/reference/android/app/admin/DevicePolicyManager
https://developer.android.com/reference/android/app/admin/DevicePolicyManager
https://github.com/googlesamples/android-testdpc/blob/master/README.md
https://github.com/googlesamples/android-testdpc/blob/master/README.md

BIBLIOGRAPHY BIBLIOGRAPHY 80

[28] “Codenames, tags, and build numbers | android open source project,” https:
//source.android.com/setup/start/build-numbers, Google, (Accessed on 2020-
04-17).

[29] P. Ratazzi, Y. Aafer, A. Ahlawat, H. Hao, Y. Wang, and W. Du, “A sys-
tematic security evaluation of android’s multi-user framework,” arXiv preprint
arXiv:1410.7752, 2014.

[30] “Usermanager | android developers,” https://developer.android.
com/reference/android/os/UserManager.html#DISALLOW_UNIFIED_
PASSWORD, Google, (Accessed on 2020-04-22).

[31] “Crossprofileapps | android developers,” https://developer.android.com/
reference/android/content/pm/CrossProfileApps.html, Google, (Accessed on
2020-04-22).

[32] “Appintro/appintro: Make a cool intro for your android app.” https://github.
com/AppIntro/AppIntro, AppIntro, (Accessed on 2020-05-04).

[33] “androidx.preference | android developers,” https://developer.android.com/
reference/androidx/preference/package-summary, Google, (Accessed on 2020-
04-23).

[34] “android.provider | android developers,” https://developer.android.com/
reference/android/provider/package-summary, Google, (Accessed on 2020-05-
10).

[35] “Capture a system trace on a device | android developers,” https://developer.
android.com/topic/performance/tracing/on-device, Google, (Accessed on 2020-
05-10).

[36] “Implicit broadcast exceptions | android developers,” https://developer.
android.com/guide/components/broadcast-exceptions, Google, (Accessed on
2020-04-25).

[37] “Windowmanager.layoutparams | android developers,” https://developer.
android.com/reference/android/view/WindowManager.LayoutParams,
Google, (Accessed on 2020-04-25).

[38] “Flag_watch_outside_touch doesn’t return location for action_outside events
on 4.2+ [36998614] - visible to public - issue tracker,” https://issuetracker.
google.com/issues/36998614, (Accessed on 2020-04-25).

[39] “AOSP: services/input/inputdispatcher.cpp - platform/frameworks/base -
git at google,” https://android.googlesource.com/platform/frameworks/base/
+/android-4.2.1_r1/services/input/InputDispatcher.cpp#1416, Google, (Ac-
cessed on 2020-04-25).

[40] T. Niedermayr, “Android keylogger,” Bachelor’s Thesis, Graz University of
Technology, 2014.

https://source.android.com/setup/start/build-numbers
https://source.android.com/setup/start/build-numbers
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNIFIED_PASSWORD
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNIFIED_PASSWORD
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNIFIED_PASSWORD
https://developer.android.com/reference/android/content/pm/CrossProfileApps.html
https://developer.android.com/reference/android/content/pm/CrossProfileApps.html
https://github.com/AppIntro/AppIntro
https://github.com/AppIntro/AppIntro
https://developer.android.com/reference/androidx/preference/package-summary
https://developer.android.com/reference/androidx/preference/package-summary
https://developer.android.com/reference/android/provider/package-summary
https://developer.android.com/reference/android/provider/package-summary
https://developer.android.com/topic/performance/tracing/on-device
https://developer.android.com/topic/performance/tracing/on-device
https://developer.android.com/guide/components/broadcast-exceptions
https://developer.android.com/guide/components/broadcast-exceptions
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://issuetracker.google.com/issues/36998614
https://issuetracker.google.com/issues/36998614
https://android.googlesource.com/platform/frameworks/base/+/android-4.2.1_r1/services/input/InputDispatcher.cpp#1416
https://android.googlesource.com/platform/frameworks/base/+/android-4.2.1_r1/services/input/InputDispatcher.cpp#1416

BIBLIOGRAPHY BIBLIOGRAPHY 81

[41] “android - ”app is displaying over other apps” notification -
stack overflow,” https://stackoverflow.com/questions/48909610/
app-is-displaying-over-other-apps-notification, (Accessed on 2020-05-26).

[42] “Android device monitor | android developers,” https://developer.android.
com/studio/profile/monitor, Google, (Accessed on 2020-05-23).

[43] A. Skillen and M. Mannan, “Mobiflage: Deniable storage encryption for mobile
devices,” IEEE Transactions on Dependable and Secure Computing, vol. 11,
no. 3, pp. 224–237, 2014.

[44] X. Yu, B. Chen, Z. Wang, B. Chang, W. T. Zhu, and J. Jing, “Mobihydra:
Pragmatic and multi-level plausibly deniable encryption storage for mobile de-
vices,” in International Conference on Information Security. Springer, 2014,
pp. 555–567.

[45] B. Chang, Z. Wang, B. Chen, and F. Zhang, “Mobipluto: File system friendly
deniable storage for mobile devices,” in Proceedings of the 31st Annual Com-
puter Security Applications Conference. ACM, 2015, pp. 381–390.

[46] PeterCxy, “Shelter: Isolate your big brother apps,” https://github.com/
PeterCxy/Shelter, (Accessed on 2020-05-30).

[47] oasisfeng, “Island for android,” https://github.com/oasisfeng/island, (Accessed
on 2020-05-30).

[48] “Batapps – apps on google play,” https://play.google.com/store/apps/details?
id=com.batapps.android&hl=de_AT, Be Anonymous Technologies, Inc, (Ac-
cessed on 2020-05-30).

[49] “Android R DP4, removed method in android.app.admin.DevicePolicy-
Manager,” https://developer.android.com/sdk/api_diff/r-dp4-incr/changes/
android.app.admin.DevicePolicyManager, Google, (Accessed on 2020-06-01).

[50] “Data storage on android - mobile security testing guide,”
https://mobile-security.gitbook.io/mobile-security-testing-guide/
android-testing-guide/0x05d-testing-data-storage, OWASP, (Accessed on
2020-06-02).

https://stackoverflow.com/questions/48909610/app-is-displaying-over-other-apps-notification
https://stackoverflow.com/questions/48909610/app-is-displaying-over-other-apps-notification
https://developer.android.com/studio/profile/monitor
https://developer.android.com/studio/profile/monitor
https://github.com/PeterCxy/Shelter
https://github.com/PeterCxy/Shelter
https://github.com/oasisfeng/island
https://play.google.com/store/apps/details?id=com.batapps.android&hl=de_AT
https://play.google.com/store/apps/details?id=com.batapps.android&hl=de_AT
https://developer.android.com/sdk/api_diff/r-dp4-incr/changes/android.app.admin.DevicePolicyManager
https://developer.android.com/sdk/api_diff/r-dp4-incr/changes/android.app.admin.DevicePolicyManager
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05d-testing-data-storage
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05d-testing-data-storage

BERNHARD GRÜNDLING
Computer Science Student & Associate Security Consultant

EXPERIENCE
Associate Security Consultant
SEC Consult Unternehmensberatung GmbH
� August 2019 – ongoing ½ Linz/Vienna

Volunteer Emergency Medical Technician
Red Cross Upper Austria
� July 2014 – ongoing ½ Bad Hall/Enns/Linz
Ambulance Service / Emergency Medical Service

Film Production
Freelance
� 2009 – ongoing ½ Austria

Alternative Civilian Service
Red Cross Upper Austria
� November 2013 – July 2014 ½ Bad Hall
Ambulance Service / Emergency Medical Service

Internship IT
EUROFIT Informationstechnologie GmbH
� August 2011 ½ Linz

� August 2010 ½ Linz
Internship in a systems house

EDUCATION
Master’s Program Computer Science
Johannes Kepler University Linz
� June 2018 – ongoing (expected 2020)
Major: Networks and Security

Bachelor of Computer Science
Johannes Kepler University Linz
� October 2013 – June 2018
Thesis: An Implementation of Ideal Deniable Encryption

Emergency Medical Technician
Red Cross Upper Austria
� November 2013 – January 2014
Various additional qualifications

High School
BRG Enns
� September 2005 – June 2013
Graduated with distinction

LANGUAGES
German ○○○○○

English ○○○○○

French ○○○○○

Latin ○○○○○

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe. Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten
Textdokument identisch.

Linz, am 7. Oktober 2020 Bernhard Gründling, BSc

83

	1 Introduction
	1.1 Motivation
	1.2 Proposal
	1.3 Task and Scope
	1.4 Outline of Contents

	2 Theory
	2.1 Definitions
	2.1.1 Steganography
	2.1.2 Cryptography
	2.1.3 The Principle of Open Design
	2.1.4 Plausible Deniability

	2.2 The Android Operating System
	2.2.1 Authentication
	2.2.2 Isolation Layers
	2.2.3 Device Policy Controller
	2.2.4 Android Debug Bridge

	2.3 Threat Model and Assumptions
	2.3.1 Threat Model
	2.3.2 Assumptions

	2.4 Requirements
	2.4.1 Security
	2.4.2 Plausibility
	2.4.3 Usability

	2.5 Implementation Options
	2.5.1 Autonomous Encryption App
	2.5.2 Virtual Container App
	2.5.3 Device Policy Controller App
	2.5.4 Custom Firmware

	2.6 Evaluation of Implementation Options
	2.6.1 Questions
	2.6.2 Results

	3 Implementation
	3.1 General Architecture
	3.2 Setup
	3.3 User Introduction
	3.4 Management
	3.4.1 Managing Apps
	3.4.2 In-App Trigger Buttons
	3.4.3 Settings

	3.5 Lockdown & Wipe
	3.5.1 Triggers
	3.5.2 Actions

	3.6 Lockdown Recovery & Custom Lockscreen
	3.6.1 Implementation Experiments
	3.6.2 Current Implementation: Invisible Pattern Unlock
	3.6.3 Recovery Actions

	4 Usage
	4.1 Installation
	4.2 Setup
	4.3 Introduction
	4.4 Management
	4.5 Lockdown Recovery

	5 Evaluation
	5.1 Security & Plausibility Analysis
	5.1.1 Key eviction
	5.1.2 Forensic Analysis
	5.1.3 Security States
	5.1.4 Plausible Deniability Effectiveness
	5.1.5 Adversary Simulation

	5.2 Usability Study
	5.2.1 Pre-Test Questionnaire
	5.2.2 Scenarios and Tasks
	5.2.3 Results

	6 Related Work
	6.1 Cryptographic Schemes
	6.1.1 TrueCrypt

	6.2 Approaches on Mobile OS
	6.2.1 Customized AOSP
	6.2.2 Mobile Apps

	7 Future Work and Summary
	7.1 Future Work
	7.1.1 Improving the App
	7.1.2 Modifying AOSP

	7.2 Summary

	A Appendix

