
Author
Manuel Pöll
11707301

Submission
Institute of Networks
and Security

Thesis Supervisor
Dr. Michael Roland

September 23, 2020

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

AN INVESTIGATION INTO
REPRODUCIBLE BUILDS
FOR AOSP

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

Abstract

Reproducible builds enable the creation of bit identical artifacts by performing a fully deterministic
build process. This is especially desireable for any open source project, including Android Open
Source Project (AOSP). Initially we cover reproducible builds in general and give an overview of
the problem space and typical solutions. Moving forward we present Simple Opinionated AOSP
builds by an external Party (SOAP), a simple suite of shell scripts used to perform AOSP builds
and compare the resulting artifacts against Google references. This is utulized to create a detailed
report of the differences. The qualitative part of this report attempts to find insight into the origin
of differences, while the quantitative provides a quick summary.

Zusammenfassung

Reproducible Builds ermöglichen die Erstellung von bit-identischen Artefakten über einen voll-
deterministischen Build-Prozess. Im Falle von Open Source Projekten, wie dem Android Open Source
Project (AOSP), ist dies besonders erstrebenswert. Zunächst behandeln wir Reproducible Builds im
Allgemeinen und betrachten typische Problemstellungen und deren Lösung. Weiters führen wir
Simple Opinionated AOSP builds by an external Party (SOAP) ein, eine einfache Sammlung von Shell-
Skripten welche AOSP Builds durchführt und einen Vergleich gegen Google Referenzen erstellt.
Dies nutzen wir um einen ausführlichen Bericht zu erstellen. Der qualitative Aspekt versucht sich
an der Ursachenfindung, während der quantitative einen schnellen Überblick verschaft.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Project Goals . 2
1.4 Outline of the Bachelor Thesis . 3

2 Reproducible Builds in General 4
2.1 Build Target . 5
2.2 Common Problems and their Solutions . 6

2.2.1 Timestamps and Similar Metadata . 6
2.2.2 Build Path . 7
2.2.3 Code Signing . 8

3 Implementation of Simple Opinionated AOSP Builds by an External Party (SOAP) 9
3.1 Architecture and Tool Choices . 9
3.2 Usage Example . 10
3.3 Challenges and their Solutions . 11

3.3.1 Sparse Images . 12
3.3.2 ext4 Images with shared_blocks Deduplication 12
3.3.3 Part of APEX Files Requires Special Treatment 13
3.3.4 Dynamic Partitions . 13
3.3.5 Image Mounting in Docker Container Requires FUSE 14

3.4 Known Deficiencies of Current Approach . 14

4 Interpretation of Uncovered Differences 16
4.1 Output Format . 16
4.2 Reproducible Artifacts . 19
4.3 Accountable Differences . 19

4.3.1 Filesystem Timestamp Metadata in Several Partitions 19
4.3.2 App Signing of Embedded APK/APEX Files, OTA Certificates and SELinux 19
4.3.3 Various Metadata in Property Files . 20
4.3.4 Google-AOSP Variations in system.img (Device Build Only) 20
4.3.5 Info Messages utilized by Bootloader (Device Build Only) 21
4.3.6 License Attribution for Files . 21

4.4 Unaccountable Differences . 21
4.4.1 Google APEX Files have Different Versions than AOSP Counterparts (Device

Builds Only) . 21
4.4.2 Additional Entries in Property Files (Device Builds Only) 22
4.4.3 VIXL Library in Runtime APEX (Device Builds Only) 22
4.4.4 SoC vendor (Qualomm) related files in system.img (Device Builds Only) 22

ii

4.4.5 vendor.img uses Inconsistent Build Target Variant (Device Build only) 23
4.4.6 ELF Debug Info Differences (GSI Builds Only) 23
4.4.7 Miscellaneous Differences (Device Builds Only) 23

4.5 Quantitative Analysis . 24
4.6 Diff Changes over Time . 25

5 Conclusions and Outlook 27

iii

1 Introduction

1.1 Motivation

Open source software is increasingly influential in numerous application domains. Originally a very
common form of software development by hobbyists, it has found widespread adoption in com-
panies of all sizes, including large multinational enterprises [27]. Typical usage areas include basic
infrastructure (Linux, Docker, etc.), databases (PostgreSQL, MySQL, etc.) and application devel-
opment across all device platforms.

Android is the single most widely adopted mobile operating system in use today [16, 17] and is also
based on open source software, namely the Android Open Source Project, short AOSP. While many
of the prominent Google applications users interact with on a regular basis are not included in the
AOSP, it does contain all building components of a fully functioning mobile operating system. This
is well illustrated by “custom ROMs” created by various hobbyist1, including the widely known
LineageOS Android distribution2.

Reproducible builds aim to make the software build process deterministic and thus allow to verify
the correspondence between source code and binary artifacts. One key motivation of open source
is the establishment of trust. Since anyone may look at the source code, every interested party can
inspect code for non-maliciousness on their own3. Therefore reproducible builds are a logical next
step for open source projects to extend the trust from their source code to the binary artifacts. This
trust provides assurance to the user base of an application that binary artifacts were not tampered
with4.

1https://forum.xda-developers.com/
2https://lineageos.org/
3How widespread such inspections are is another topic entirely and not in scope of this work
4It should be noted that large scale software distribution in itself is a complicated topic that involves not only the author

of an application, but might also include, but is not limited to: a package maintainer, a software distribution channel,
a package manager, the operating system, etc. Actual verifiable trust in installed software generally required trust in
all of the aforementioned parties [18, 28]

1

https://forum.xda-developers.com/
https://lineageos.org/

1.2 Problem Statement

While there are various Android distributions (commonly also called “custom ROMs”), their adop-
tion seems negligible compared to the overall number of Android installations5. Additionally
only a subset of third party Android distribution users compile their own images, while many
opt to download them from Android distribution creators. Thus the following observation holds
for the vast majority of Android users: The full trust of the operating system is contingent on
the full trust of Google and the device OEM (or even anonymous individuals on platforms like
XDA Developers) and there is little to no possibility to verify the correspondence between the
binary artifacts running on their device and the source code in AOSP by an independent third
party.

Anyone, especially the vast majority of stock Android users, running the operating system via
binary artifacts that they did not compile themself can benefit from the increased trust of repro-
ducible builds. Since AOSP currently does not declare reproducibility as an official goal and we are
not aware of prior investigations into this subject, we intend to research basic questions on this mat-
ter. Based on the above context we formulated the following research questions:

RQ-R Can AOSP/Android be built in a reproducible manner?

RQ-R-D If not, can all differences be accounted for, i.e. can AOSP/Android be built in an
accountable manner?6

RQ-R-CBT What is the number of differences among different build targets (specific devices/
generic system images)?

RQ-R-COT How does the number of differences change over time?

RQ-BT How can we automate the build process of AOSP and the subsequent analysis for differ-
ences in the binary artifacts?

1.3 Project Goals

This bachelor thesis and the related project (Simple Opinionated AOSP builds by an external Party,
short SOAP) aim to build AOSP in a reproducible manner and identify differences to the refer-
ence builds provided by Google. We are aware of the following sources of reference builds by
Google:

5It is difficult to acquire hard numbers on the usage of Android distributions since many advertise strong privacy
feature (e.g. no usage statistics). Usage statistics by LineageOS indicate at least 1.7 million users [15] and can be seen
a very conservative lower boundary.

6See section 2.2 for a definition of accountable builds

2

• Factory images [12] for phones by Google,

• Generic system images (GSI) as provided by the Android CI dashboard [2].

A selection (in regard to version and build target) of specific builds from these sources were made
and act as basis of our investigation (RQ-R). Note that some differences are expected and likely
unavoidable (c.f. section 2.2 for details, e.g. cryptographic signing keys), all of these instances will
be documented. We will attempt to find explanations for all uncovered differences, thus enabling
us to declare AOSP as an accountable build (RQ-R-D).

An auxiliary goal of this investigation is the creation of tooling that makes both the build of AOSP
and the subsequent analysis process (to determine differences in binary artifacts) simple. This
tooling will be released as open source, enabling verification of our process. Furthermore it should
allow third parties (even without the technical knowhow) to create their own Android images that
match, or come as close as possible to, ours (RQ-BT). Uncovered diffs between official builds and
ours should be made accessible via a web interface (helping with RQ-R-D) on https://android.

ins.jku.at/. Furthermore we intend to aggregate these diffs (number of added/modified/deleted
lines). Such a quantitative analysis allows a big picture view of trends on this subject (RQ-R-CBT,
RQ-R-COT).

1.4 Outline of the Bachelor Thesis

Initially Chapter 2 covers the general topic of reproducible builds as it is understood in the industry
with a focus on the definitions and ground work from the Reproducible Builds initiative [20].
This also delves into some cryptography basics required in later sections. Chapter 3 introduces
SOAP, its design choices with underlying rationale, noteworthy aspects, known shortcomings,
and gives usage instructions for the two supported build flows. Essentially this section has the
same goals as a tool paper. The results of several builds, most notably the uncovered differences
against the reference builds, are analyzed and interpreted in Chapter 4. Finally, we conclude this
bachelor thesis with Chapter 5 by providing conclusions and an outlook towards future research
areas.

3

https://android.ins.jku.at/
https://android.ins.jku.at/

2 Reproducible Builds in General

The typical textbook definition of reproducibility mandates exact bit equality between two builds
of the same build target [20]. This is very much a desirable goal since it enables the usage of cryp-
tographic hash functions and thus makes the comparison for reproducibility purposes straight
forward and easily automatable. While we could download the full reference build and compare
it with ours directly bit-for-bit, the usage of a current (i.e. not broken) cryptographic hash function
[14] provides the same functionality while only requiring the download of a tiny fixed size hash
value. The check for reproducibility works as follows:

1. Download cryptographic hash over secure channel from a trusted party,

2. Compile your own build for the same build target,

3. Perform cryptographic hashing function on the binary artifacts and compare against known
good reference.

Note that the second step involves performing your own build and hence checks for reproducibil-
ity. Replacing the second step with the download of a compiled binary, one arrives at the common
pattern of integrity verification during transit. This ensures that a binary is not modified between
its creation and the receiving end user. While some provide these hashes with the expectation that
users compute and compare these manually (e.g. when downloading a Windows executable), this
process is done by most software stores or similar, like the Debian package manager [8], automat-
ically. A further extension of this is code signing (c.f. section 2.2.3 for details) which uses a digital
certificate to identify the signing party. Code signing is important for its own reasons, but is or-
thogonal to the reproducibility checking procedure described above and should not be confused
with it.

The goal of reproducibility has to be viewed in the context of rising software complexity in gen-
eral. While academics have long since established the research area of software complexity metrics
[29, 31], practitioners keep inventing new, novel programming languages along with their own
suites of tooling, notably including build tools1. Meta-build systems, or more commonly called build
script generators2 add another layer of complexity onto lower level primary build systems. Huge
software projects, like Android utilize several programming languages and face the challenge of

1E.g. cargo build for Rust; go build for Go; and even new ones, like Ninja for old, venerable languages like
C/C++/Java/. . .

2CMake, GNU autotools, GYP, Meson and similar tools

4

integrating these. Especially for open source projects it’s vital that the build process (most notably
build environment prerequisites, build instructions and resource demand) stays within reasonable
boundaries to ensure accessibility for current and prospective contributors.

One possible “solution” to the challenge of reproducibility, at least for open source software, is
to compile all software for oneself. As previously established (c.f. section 1.1) reproducibility is
about bridging the gap between source code and binary artifacts, thus performing this task oneself
does create the required trust, but represents more of a workaround than a true solution. Cer-
tain projects, like the Gentoo Linux distribution, are focused around this approach3. The conve-
nience and predominance of binary distribution for software cannot be overstated and thus man-
date a true solution to this problem. Even if a user opts to employ this solution, a malicious build
toolchain can still result in compromised binary artifacts.

Additionally it should be noted that reproducibility is also beneficial for closed source soft-
ware. Various library dependency management systems feature a concept of lock files, e.g.
package-lock.json for npm and Cargo.lock for Cargo, describing the exact versions of libraries (even
transitive ones) that the dependency system installed. This information should be committed into
a source code repository and will be used for subsequent (re-)installation, thus enabling precisely
matching dependencies and should enable reproducible builds. While it is helpful to track the
exact versions of dependencies (c.f. libraries/frameworks in section 2.1) it is primarily a responsi-
bility of the build system to perform a reproducible build. One gain that is especially noteworthy
in this context is the traceability that is implied with reproducible builds, since this is an important
aspect for audits (a regular and often mandatory process for companies; even if their software is
closed source from the perspective of the general public).

Note that it does not matter if the application itself and/or one or more of the dependencies is
closed source. While the previous examples for dependency systems are prominently known for
open source libraries, that is not a requirement for this mechanism. Consider that npm allows the
creation of private repositories that keep your own libraries under your full control4.

2.1 Build Target

The term build target is, at the very least, a tuple of the following orthogonal aspects and produces
a set of binary artifacts:

• Source code: The entirety of all source files involved in the build, including various configura-
tion files. The state of the aforementioned is usually derived by the checkout of commits from
one or more code repositories. For pretty much all non-trivial projects this also encompasses

3It should be noted that the primary benefit of Gentoo’s approach are optimizations for the specific target hardware
(e.g. including modern ISA extensions, like AVX2), but the gained security assurances are a neat benefit on top.

4https://tomspencer.dev/blog/2015/05/20/an-alternative-to-npm-private-modules/

5

https://tomspencer.dev/blog/2015/05/20/an-alternative-to-npm-private-modules/

– Libraries/Frameworks: These are treated as input for the build process and thus any changes
in these are likely to result in changes in the binary artifacts.

• Build Target Architecture: Instruction set architectures (ISAs) as contract between hardware and
software vary greatly between platforms and thus require different machine code5.

– Target Operating system: Binaries that are executed natively (in contrast to interpretation
or platform-agnostic intermediate formats) interact with the operating system via system
calls. These are different for all major OSes and therefore require different machine code.

• Build Tools: Tools used for the build process, especially compiler and linker, evolve them-
selves and thus emit (hopefully better) binaries even if all of the above aspects remain un-
changed.

Some projects may extend the above list of aspects with additional considerations. E.g. The Debian
project also considers an identical “path to the build directory” as a requirement for a reproducible
build [22]. Therefore we opt to keep the term binary artifact target purposefully ambiguous, at least
in regard to anything beyond the aspects mentioned above.

2.2 Common Problems and their Solutions

However, often, such a bit exact equality is not achievable due to various reasons [9], we will
explore some common ones in this section of the bachelor thesis. While some of these are “fix-
able” by updating the build tooling and/or the application itself, other differences are very much
unavoidable (like public keys that are embedded in an artifact).

Even if exact binary equality is not achievable, any difference in a binary artifact that can be ac-
counted for is better than one that cannot be explained. If two builds of the same binary artifact
target differ only by fully accountable differences, we refer to this as an accountable build. While
an accountable build is weaker than a reproducible one, it is nevertheless a good step in the right
direction.

2.2.1 Timestamps and Similar Metadata

Many artifacts include timestamps of interest (time of compilation start or finish, birth and/or
change of packaged file, etc.) for their core functionality or to augment their usability. The last

5While there exists an approach to bundle machine code for multiple platforms, called “fat binaries”, these are a niche
for specific use cases.

6

modification timestamp6 is part of the core ZIP file format specification [30] and allows the preser-
vation of file metadata. Other examples, like the PE file format contain the timestamp7 solely for
debugging purposes [19] and are thus not used in their core use cases.

There are several strategies to deal with timestamps [23], most notably:

• If a timestamp is not essential for the functionality of an artifact, it may simply be stripped
in a post process (e.g. dh_strip_nondeterminism8) or its creation omitted entirely (which may
require updating the generating build tool).

• In case an omission is not desirable, one must ensure that a timestamp value is derived in a
deterministic fashion, i.e. solely dependent on source code in question. This deterministic
timestamp is either written by the builds tool directly (the Reproducible Builds project has
established the SOURCE_DATE_EPOCH environment variable for this purpose [25]) or patched in a
post process step. Different strategies for deriving such a deterministic timestamp exist, e.g.

– Based on some aspect of the source code. E.g. Debian uses the timestamp of the most re-
cent modification of a packages changelog, thus preserving some of the utility of times-
tamps while achieving the core goal of determinism.

– If acceptable for the projects goal, one may use a constant value. E.g. a “0” unix times-
tamp, indicating January 1st, 1970.

Similar problems exist for various other metadata, these include, but are not limited to:

• Global system properties (hostname, timezone, kernel version, etc.),

• User information (username, locale, etc.),

• Additional metadata on files (owner/group, ACLs, etc.).

2.2.2 Build Path

Some artifacts may contain absolute paths to directories relevant for the build process (location of
source code, build output directory, etc.). For example, an ELF binary may contain an optional
RPATH tag specifying additional lookup directories for the linker [24].

Once again, there are multiple viable solutions:

• If the use case permits it, opt for the specification of a relative path. E.g. Debian recommends
this9 for the previously described RPATH tag problem.

6Technically these are 2 fields in the ZIP standard, last mod file time and last mod file date with 2 bytes each.
7Specifically the TimeDateStamp field in the COFF header embedded in the PE file format.
8Part of the debhelper package used to bundle software for distribution in Debian.
9Specifically of the form ORIGIN/my/relative/path to make the path relative to the ELF instead of the current working

directory of the invoking process.

7

• Another approach is ensuring that artifacts contain specific fixed absolute paths while work-
ing with (possibly different) paths during the build process. Similar to the timestamp solu-
tions (c.f. section 2.2.1) this may either happen proactively by the build tools (a draft for a
BUILD_PATH_PREFIX_MAP environment variable aims to solve this [21]; similar to SOURCE_DATE_EPOCH

for the timestamp issue) or fixed in a post process.

2.2.3 Code Signing

Code signing (i.e. app signing) uses a public-private key pair (pk, sk) (for public key, signing key)10

to create a signature s of the application to establish authenticity and integrity for binary artifacts.
The signature s and pk, which are the two minimal components required to verify a signature, are
usually bundled into a digital certificate cert in order to integrate with a PKI and provide useful
metadata about the key owner (commonly called subject).

Noteworthy examples include Microsofts Autheticode Code Signing for Windows [1], used to sign
Windows executables. A similar mechanism, called app signing is used by Google to sign APKs or
app bundles intended to run on Android [26].

Regardless if a software is open source, publicly sharing signing key sk defeats its purpose, thus
mandating that each build user has their own (pk, sk) pair. As long as one considers a certifi-
cate cert as auxiliary metadata, but not part of the binary artifact itself, this is a workable state
of conditions for reproducible builds since the different keys/signature are not part of the artifact
hash.

10Either created by itself or derived from a key chain. This key chain should be rooted in a trusted root authority,
managed by one or more certificate authorities (CAs) as part of a public key infrastructure (PKI). Such a PKI vastly
strengthens the authenticity claim of the (pk, sk) pair, since a client does not need to trust pk directly, but rather a set
of public root keys {pkroot1 , pkroot2 , . . . , pkrootn} managed by CAs.

8

3 Implementation of Simple Opinionated AOSP
Builds by an External Party (SOAP)

Building AOSP involves several steps, ranging from the preparation of a build environment, check-
out of source code and finally the actual build process [3]. A key observation is that the officially
documented approach mandates a Linux build system (specifically a Debian based distribution)
and all performed steps are commands executed in a bash compatible shell. Additional steps
needed for a comparison of binary artifacts, like retrieval of reference images from Google, can
easily be done via common utilities (e.g. wget) as well. This makes shell scripts the obvious choice
for implementing a project to automate the build and analysis process.

3.1 Architecture and Tool Choices

Our project, SOAP consists of several small, composable shell scripts, each responsible for per-
forming a step in the aforementioned process. A master script can be used to execute all steps in
proper sequence. Embracing the Keep is stupid simple (KISS) philosophy behind Unix compatible
shells for the project itself has several advantages:

• Source level modularization makes code more legible by keeping individual files small and
focused on specific tasks.

• Splitting of source code facilitates reuse and integration with other tools. Consider the fol-
lowing usages in our project:

– We use Jenkins to maintain an overview of past and currently running builds. The
Jenkinsfile1 calls the sub-scripts directly, these are grouped in stages (Cloning, Build-
ing, Fetch Reference, Analysis) and thus displayed accordingly in the web UI. Allows
monitoring of both past and currently active builds, especially their runtime.

– Sub-scripts are also suitable for execution in a container environment, specifically we
validated their successful execution with Docker. In Docker, we first build an image (by
running sub-scripts related to the environment setup) and run a container of this image

1Configuration file used to specify a pipeline, i.e. a build job description.

9

(running the checkout/build/analysis related tasks). Again, this simple split is made
possible by the division into sub-scripts.

Furthermore the project includes an analysis process that compares our build output to reference
builds by Google. This comparison requires the creation of diffs of various file formats, some of
which are only containers for other files, e.g. ZIP archives, file system images, APKs. Fortunately
there is already a prominent tool for such a (multiple levels deep) recursive and context sensitive
diff task, the diffoscope tool [10] by the Reproducible Builds initiative. As added benefit, the tool
even offers HTML output (via the --html-dir flag), helping to fulfill the project goal of providing
diffs as a web page (c.f. section 1.3).

3.2 Usage Example

In this section we show an example usage of the SOAP project and guide the user through the re-
quired steps. SOAP supports two build flows, one tailored for each type of reference build listed in
section 1.3. For brevity we only walk the user through the device flow, aiming to reproduce a fac-
tory image for a certain Google Pixel device. The following instructions execute the SOAP builds
scripts directly, requiring a Debian compatible Linux environment (in contrast to the alternatives
via Jenkins or in a Docker container).

1. Ensure you are running a Debian compatible Linux environment. We validated the usage of
SOAP with Debian 10 and Ubuntu 18.04.

2. Acquire the SOAP project via Github from https://github.com/mobilesec/

reproducible-builds-aosp.

3. We need to prepare a build environment by executing all scripts under scripts/setup, except
04_config-profile-for-docker.sh, in proper sequence. The order is indicated by the number in
the first two characters of the file name and none of the scripts require parameters.

4. Now we can execute run-host-device.sh to perform the device build. Note however, that the
following environment variables need to be set2 before doing so, to properly parameterize
your build:

• AOSP_REF: Branch or tag in the AOSP codebase, refer to “Source code tags and builds”3

for a list. Specifically refer to the “Tag” column, e.g. android-10.0.0_r40.

• BUILD_ID: Specific version of AOSP, corresponds to a certain tag. Refer to the “Build”
column in the same “Source code tags and builds”3 table, e.g. QQ3A.200705.002.

2The preferred way of setting environment variables is via declare -rx <MY_VAR>="<MY_VAL>" to make it read-only
and export it at the same time, e.g. declare -rx AOSP_REF="android-10.0.0_r40"

3https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds

10

https://github.com/mobilesec/reproducible-builds-aosp
https://github.com/mobilesec/reproducible-builds-aosp
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds

• DEVICE_CODENAME: Internal code name for the device, see the “Fastboot instructions”4 for a
list mapping branding names to the codenames. For example, the “Pixel 3 XL” branding
name has the codename crosshatch.

• RB_BUILD_TARGET: Our build target as chosen in lunch5, consisting of a tuple (TARGET_PRODUCT
and TARGET_BUILD_VARIANT) combined via a dash. The “Choose a target”6 section provides
documentation for these. AOSP offers TARGET_PRODUCT values for each device with an
“aosp_” prefix. E.g a release build of the previously mentioned “Pixel 3 XL” device
would be defined as aosp_crosshatch-user.

• GOOGLE_BUILD_TARGET: Very similar to RB_BUILD_TARGET, except that this represents Google’s
build target. Note that factory images provided by Google use a non-AOSP
TARGET_PRODUCT variable. E.g a release build by Google for our running example would
be defined as crosshatch-user.

Optionally one can set the environment variable RB_AOSP_BASE to tell SOAP the base location
where all (temporary and non-temporary) files should be placed under. If not specified, it
defaults to ${HOME}/aosp. Refer to “Hardware requirements”7 for disk space demand.

5. Once the build and subsequent analysis finishes, one can find the uncovered differences in
$RB_AOSP_BASE/diff in a folder named according to your parameters from the previous step.
Details concerning the result format and interpretation can be found in Chapter 4.

Future runs of the SOAP scripts, on the same machine, should start from step 4 since all previous
steps are persistent.

3.3 Challenges and their Solutions

During the implementation of the SOAP project we encountered challenges that required unique
solutions. While some of these originated from our project goals concerning the analysis of file
system images and the general tools we choose to use (c.f section 3.3.5), others were related to the
changes that were introduced with Android 10 (c.f. section 3.3.2).

4https://source.android.com/setup/build/running#booting-into-fastboot-mode
5a helper function of AOSP
6https://source.android.com/setup/build/building#choose-a-target
7https://source.android.com/setup/build/requirements#hardware-requirements

11

https://source.android.com/setup/build/running#booting-into-fastboot-mode
https://source.android.com/setup/build/building#choose-a-target
https://source.android.com/setup/build/requirements#hardware-requirements

3.3.1 Sparse Images

Filesystem images can become quite large, especially if certain requirements demand padding with
empty space (e.g. due to alignment needs) or contain duplicate blocks of data. To alleviate these
problems Android has created their own sparse image format [5] and employs this technique for
their factory images [12].

We require raw file system images for our processing and thus need to perform a conversion.
Fortunately there is a simple simg2img command line interface (CLI) utility included in the AOSP
project8 that fits our needs.

3.3.2 ext4 Images with shared_blocks Deduplication

Since Android 10 deduplication has also been integrated into the ext4 file system itself. The
EXT4_FEATURE_RO_COMPAT_SHARED_BLOCKS feature reduces file size. Noteably the image size savings
are also in effect when flashed onto a phones’ storage. The previously explained sparse im-
age format also performs deduplication, but is resolved to a regular image during the flash pro-
cess.

The AOSP repository maintains a “copy” of the ext4.h header file (which defines the constants
for all ext4 features) used by AOSP to expose symbols to userspace tools. Noteably their version
in AOSP9 does contain the aforementioned EXT4_FEATURE_RO_COMPAT_SHARED_BLOCKS feature while the
upstream Linux kernel10 does not define it. This difference stands in contrast to the claim of the
header file in AOSP, which reads as follows:

*** This header was automatically generated from a Linux kernel header
*** of the same name , to make information necessary for userspace to
*** call into the kernel available to libc. It contains only constants ,
*** structures , and macros generated from the original header , and thus ,
*** contains no copyrightable information.

The e2fsprogs, the ext2/3/4 file system utilities, do support this feature and refer to it simply as
shared_blocks11. In contrast to the kernel support, these changes to e2fsprogs have been ported
upstream12 and were released with version 1.44.3. Part of this support is the ability to undo the
deduplication via e2fsck -E unshare_blocks <image> at the cost of additional space. In any sane case

8Technicically the source does not include the tool directly, rather it is one of many utilities that is built under
out/host/linux-x86/bin/ during the AOSP build process.

9https://android.googlesource.com/platform/system/extras/+/refs/tags/android-10.0.0_r40/ext4_
utils/include/ext4_utils/ext4.h#499

10https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/fs/ext4/ext4.h?h=v5.7.8#
n1785

11https://android.googlesource.com/platform/external/e2fsprogs/+/refs/tags/android-10.0.0_r40/lib/
e2p/feature.c#75

12https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git/commit/?id=611d341377607d69b053436fec6de016fe8258fd

12

https://android.googlesource.com/platform/system/extras/+/refs/tags/android-10.0.0_r40/ext4_utils/include/ext4_utils/ext4.h#499
https://android.googlesource.com/platform/system/extras/+/refs/tags/android-10.0.0_r40/ext4_utils/include/ext4_utils/ext4.h#499
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/fs/ext4/ext4.h?h=v5.7.8#n1785
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/fs/ext4/ext4.h?h=v5.7.8#n1785
https://android.googlesource.com/platform/external/e2fsprogs/+/refs/tags/android-10.0.0_r40/lib/e2p/feature.c#75
https://android.googlesource.com/platform/external/e2fsprogs/+/refs/tags/android-10.0.0_r40/lib/e2p/feature.c#75
https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git/commit/?id=611d341377607d69b053436fec6de016fe8258fd

the given image with shared blocks does not contain sufficient space to enable unsharing, after all
that is the appeal of this process in the first place, and thus requires increasing the image size via
resize2fs before unsharing blocks.

Since the EXT4_FEATURE_RO_COMPAT_SHARED_BLOCKS feature is not part of the upstream kernel, our Debian
based Linux does not understand it. Initially we considered the previously mentioned procedure
(file system resizing and unsharing) as a solution to enable working with these images. However,
an upstream kernel can still mount the shared images read-only. As noted in the Kernel Wiki13, the
s_feature_ro_compat field of the ext4 superblock designates features that permit read-only mounting
even if a feature is unrecognized. EXT4_FEATURE_RO_COMPAT_SHARED_BLOCKS is such a feature. This is suf-
ficient for our requirements and in fact a benefit, since diffoscope and other tooling can’t acciden-
tially perform modifications. We do need to perform the mount operation ourself, instead of dele-
gating it to diffoscope, to ensure it is a read-only mount and thus suceeds.

3.3.3 Part of APEX Files Requires Special Treatment

As part of the effort to make system components easily upgradeable, Google introduced
the Android Pony Express (APEX) container file format [4] with Android 10. A key part
of the APEX file format is the apex_payload.img, an ext4 image that also makes use of the
EXT4_FEATURE_RO_COMPAT_SHARED_BLOCKS feature.

Working with such images requires the consistent usage of a read-only mount and thus we can’t
delegate this task to the diffoscope tool. The diffoscope tool performs mounts via a C library call
(instead of invoking the shell binary) and the author is not aware of an easy way to override the
ext4 mount option defaults14. To solve this issue we opteded to exclude apex_payload.img files dur-
ing the initial analysis. Subsequently we extract these files in our SOAP scripts from the outer
system.img and perform the mount operation in these before passing it onto diffoscope for analy-
sis.

3.3.4 Dynamic Partitions

Another recent addition to the file system handling is the introduction of a dynamic super.img par-
tition that encapsulates several other partitions, most notably system.img, vendor.img and product.img.
As the AOSP documentation explains15 this only covers partitions that are suitable for read-only
mounting and any partition that needs to be accessed by the bootloader is not supported either.

13https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#The_Super_Block
14One possible, but somewhat complex, solution would involve monkey patching the C library function via

LD_PRELOAD.
15https://source.android.com/devices/tech/ota/dynamic_partitions

13

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#The_Super_Block
https://source.android.com/devices/tech/ota/dynamic_partitions

The GSI build targets output such a dynamic partition. Therefore the Android CI Dashboard con-
tains only the super.img build artifact while ommiting the classical system.img and vendor.img files.
This necessitates the decomposition into the individual partition images, which can be achieved
via the lpunpack tool from AOSP. While several other utilities (e.g. simg2img, see section 3.3.1) are
built as part of the standard build targets, this one is not and requires the invocation of its own
built target16.

3.3.5 Image Mounting in Docker Container Requires FUSE

Docker enables the creation of containers, a more lightweight alternative to full fledged virtual
machines, that make use of several modern Linux OS level separation mechanisms, like cgroups
and namespaces, to isolate one or more programs aimed to provide a specific service. As part of
our analysis process of SOAP we need to extract file system images. On the surface this seems like
a simple task that should be doable inside a container environment. After all, if a user can read the
file system image, like with any other archive format, the extraction is only a matter of properly
interpreting the format.

In general, performing a mount operation requires privileged root permissions. Linux also sup-
ports a more fine grained permission control via capabilities [7], where each capability grants only
specific targeted permissions. Docker containers nominally run with a root user, but under the
surface only a small subset of capacilities are retained. At first glance it would seem that the
CAP_SYS_ADMIN capability is sufficient to enable mount operations. While that does work for block
devices (as commonly found under /dev, e.g. /dev/sdb), that trivial solution does not scale to file
backed images, which require an allocation via a loopback device. Crucially this does not even
work when running the Docker container with --privileged17 [11].

Filesystem in Userspace (FUSE) permits the creation of custom filesystems and also allows mount-
ing in certain limited and well defined circumstances by non-privileged users. Since ext4 is a well
established filesystem supported by the main kernel, FUSE implementations don’t commonly pro-
vide support for it. However, libguestfs supports a wide range of file systems by running a QEMU
VM ontop of the host kernel via KVM. This works well for our use case and enables mounting of
ext4 images even in a container environment.

3.4 Known Deficiencies of Current Approach

Not all of the challenges we encounted could be solved sufficiently. For the sake of completeness
we will document the deficiencies here, hoping that future work might provide better solutions

16Specifically via mm -j $(nproc) lpunpack
17Which grants all capabilities and bind mounts the full /dev folder from the host.

14

for these. The one and only noteworthy example of this concerns the interaction between AOSP
source code and Docker.

The standard approach for a build process running inside a Docker image is to clone the source
code repository as one of the first steps of the container execution. AOSP consists of several git
repositories and (as of 2020) consumes roughly 70 GB disk space. Downloading such a huge repos-
itory anew for every build in a container environment is a heavy demand and thus we looked for
alternative approaches.

One simple approach that comes to mind is embedding the source code into the container image.
However, this was quickly discarded since the source code is continually evolving and thus not
suitable for this. Furthermore this would expand the image size drastically and the embedding of
big files during the image building is generally considered an anti-pattern [6].

We settled on a hybrid approach that employs bind mounts into the container. A considerable
advantage is the quick local access to the source code, which we now only need to download
as a whole once. Whenever building a newer version of AOSP we still need to fetch code from
the remote repository, but the repo synch process only needs to pull small deltas to the current
local state. On the other hand this does partially undermine the isolation provided by Docker and
crucially prohibits concurrent use of the source code.

15

4 Interpretation of Uncovered Differences

The analysis of reproducibility and inspection of differences is based on a small subset of builds
performed by Google due to resource constraints. After explaining the output format, we first
delve into the question if (some) binary artifacts can be built reproducibly (c.f. section 4.2). All
artifacts that do not satisfy this condition, are further analysed both qualitatively and quantitively
in section 4.3, section 4.4 and section 4.5. The aforementioned analysis is done for both build flows
and primarily based of the following versions of the AOSP source code:

• Source tag android-10.0.0_r35 (security patch level 2020-05-05) for the device build flow and

• Build id 6692013 for the generic build flow.

It should be noted that we did cross check the findings from these specific builds against builds that
both preceed and suceed the mentioned versions of the AOSP source code to reduce the possibility
of outliers and subsequently wrong analysis. After that we inspect if, and how much the number of
differences changes across different version of the AOSP source code (c.f. section 4.6).

4.1 Output Format

An Android installation consists of several partitions that are written to flash storage. Therefore
file system images of these partitions, each serving a specific pupose, are the binary artifacts of the
AOSP build process. General information about these partitions can be found in the AOSP docu-
mentation1 and a high level understanding is necesarry for the following interpretation.

After the AOSP build proces finishes, SOAP performs an analysis and outputs the result to the diff

folder. Specifically we create a list of artifacts for both our and Googles’ build and only consider
files that exist in both for further inspection. For each of these we perform a recursive diff analysis
via diffoscope and generate a HTML and CSV report. This is noteworthy because it makes our
tooling robust against future partition changes2 since we have no hard coded assumptions about
the partition names and content. As long as the file system image names match, a report will be
created. For any file <artifact> these reports are:

1https://source.android.com/devices/bootloader/partitions-images and most of the sibling pages are rele-
vant.

2Consider that Android 9 and 10 alone introduced three new partitions, namely product, odm and super.

16

https://source.android.com/devices/bootloader/partitions-images

Table 4.1: Artifacts file lists for source tag android-10.0.0_r35 and build id 6692013. Some additional meta-
data files, notably several installed-files*.txt/json, that are themselves file lists for image files,
were excluded since they are not part of the actual installation.

(a) Device flow

File Name Google Build Our Build
android-info.txt X X
boot-debug.img X
boot.img X X
dtb.img X
dtbo.img X X
persist.img X
product.img X X
ramdisk-debug.img X
ramdisk-recovery.img X
ramdisk.img X
super_empty.img X X
system.img X X
system_other.img X X
userdata.img X
vbmeta.img X X
vendor.img X X

(b) Generic flow

File Name Google Build Our Build
android-info.txt X X
cache.img X
dtb.img X
encryptionkey.img X
ramdisk-debug.img X X
ramdisk.img X X
super.img X
super_empty.img X X
system.img X X
userdata.img X
vbmeta.img X
vbmeta_system.img X
vendor.img X

• A detailed HTML report in the folder <artifact>.diff.html-dir showing diffs for all artifacts
that exhibit variations. View by opening the index.html file within.

• Quantitative analysis of the results is provided by a CSV report, located in
<artifact>.diff.json.csv, summing up the number of added, removed and modified lines for
each artifact, essentialy a histogram in text form3. This CSV file is visualized in a hierarchical
treemap in <artifact>.change-vis.html.

Note that APEX files within images are treated specially. Their apex_payload.img image
files are excluded from the top level image analysis report for technical reasons. In-
stead they each receive their own reports, specificially for a given <apex-file>, these can
be found under <artifact>.apexes/<apex-file>-apex_payload.img.diff with the respective suf-
fixes.

Finally we aggregate the individual CSV reports (which exist for each artifact) into a single summary.csv

file. A variation of this, named summary-major.csv, exclude certain differences and gives a more con-
cise picture. These big picture reports for our two running samples are reproduced in section 4.5,
together with a rational for the “major” variation.

3The CSV is the result of a decently complex post process and derived from a JSON output of diffoscope, hence the
chained file suffix.

17

For reference we provide a list of files for the specific builds mentioned at the start of the chapter
in table 4.1. Before inspecting any of the image files in detail, we can already disregard several of
them (for some build types) due to their nature. These are the following:

• boot-debug.img, ramdisk-debug.img are needed to run certain compliance test suites since An-
droid 104 and, with a minor exception, these are not distributed by Google.

• GSIs rely on the pre-existing boot loader and thus do not supply their own boot.img

• Before the introduction of seamless updates, i.e. A/B partitions, the cache.img served as tem-
porary download space for system updates, but is no longer part of modern installations.

• Device tree related partitions (both dtb.img and dtbo.img) are not applicable to GSIs since they
are device specific. In case of Pixel phones one can disregard the dtb.img (exclusive in our
build) since it is only an indermediate output, and will be apended to the kernel image within
boot.img. However, dtbo.img, the Device Tree Blob for Overlay, is relevant for Pixel devices.

• encryptionkey.img only exists in our GSI build and thus can’t be compared against anything.

• Sensor calibration data stored in persist.img is unique to each device and thus neither part of
Pixel factory images nor GSIs.

• product.img contains customization and apps from the OEM. This is out of scope of the GSIs.
Pixel phones ship with a suite of Google proprietary apps, while AOSP contains basic open
source variants. Differences are expected and normal.

• ramdisk-recovery.img is a specific ramdisk tailored for the recovery mode. It is not part of Pixel
factory images/GSIs and thus we have no reference to compare against.

• The regular ramdisk image (ramdisk.img) is only an intermediate and packaged into boot.img,
at least for the regular device builds.

• Section 3.3.4 covers super.img in detail, it is only a container for other partitions, namely
system.img, vendor.img and product.img. We analyse the relevant embedded ones directly.

• As the name indicates, userdata.img contains files and apps from the user and thus is not part
of Pixel factory images/GSIs.

• The top level vbmeta.img signs, among others, the boot.img. With boot.img being out of
GSI scope, this image can be savely disregarded. On the surface it would appear that
vbmeta_system.img can be included in a GSI comparision. In practice this is prohibited by the
absence of such a partition in Google provided builds.

• Due to their generic nature, GSIs do not have their own vendor.img, but rather rely on the
pre-existing image.

4https://source.android.com/compatibility/vts/vts-on-gsi

18

https://source.android.com/compatibility/vts/vts-on-gsi

4.2 Reproducible Artifacts

To determine full reproducibility and thus answering RQ-R we simply performed a cryptographic
hash function on the artifacts, as explained in chapter 2. The following artifacts were reproducible:

• For the device flow that was only true for super_empty.img.

• For the generic flow these were: android-info.txt, ramdisk-debug.img, ramdisk.img, super_empty.img.

After excluding all files that inherently cannot be reproducible, as well as those that already achieve
this goal, we are left with the following artifacts that require inspection:

• For the device flow these are: android-info.txt, boot.img, dtbo.img, system.img, system_other.img,
vbmeta.img, vendor.img.

• For the generic flow these are: system.img.

4.3 Accountable Differences

4.3.1 Filesystem Timestamp Metadata in Several Partitions

Google device build targets normalize the filesystem timestamps (ctime/mtime/atime) to a spe-
cific date, namely January 1, 2009. This is laudable, since it it serves the goal of reproducibility and
is in fact the second solution explained in section 2.2.1. Unfortunately this normalization process
is not done for any of the aosp_* build targets5. Subsequently we encountered filesystem times-
tamp differences in our original analysis and added the --exclude-directory-metadata=recursive flag
to diffoscope to suppress them.

4.3.2 App Signing of Embedded APK/APEX Files, OTA Certificates and SELinux

When building AOSP, each APK included and bundled into the images, has its own digi-
tal certificate. As established in section 2.2.3 these certificates need to be different for each
build user to maintain the security aspects of Android app signing. Therefore we exclude
original/META-INF/CERT.RSA from our analysis.

Similarily we face this problem for APEX files, thus excluding META-INF/CERT.RSA and apex_pubkey.
Finally there are two additional certificates (update-payload-key.pub.pem and releasekey.x509.pem; or
testkey.x509.pem as it is named in our builds) that appear to be related to the over the air (OTA)
update functionality and were exempt from the report results as well.

5This concerns all partitions, except vendor.img. That one is normalized even in our build.

19

Unfotunately the above exclusions are not sufficient to fully address this problem. APEX files con-
tain META-INF/CERT.SF and META-INF/MANIFEST.MF, both of which contain file listings with checksums.
Thus the previously named certificate files show up as changed here. Due to the possibility of
other, non-accountable, changes showing up here as well, we did not add these to the exclusion
list. A similar argument applies to the zipinfo tool invocation for APK files. Ultimately these false
positives are a compromise in our report that are mainly rooted in the inability to customize diffo-
scope for such fine grained exclusions.

Another related subject are the certificates trusted by SELinux. These are 3 ASN.1 certificates,
encoded as DER hexdump [13] inside system/etc/selinux/plat_mac_permissions.xml in system.img. Just
like with all previous cases of cryptographic signing, this difference is accountable. However, due
to the sensitivity of this file, we opted to tolerate this false postive in our report and did not put it
on the exclusion list.

4.3.3 Various Metadata in Property Files

Several partitions feature one or more property files6 that record build and configuations prop-
erties. Several of these properties, e.g. exact timestamp of build, signing keys, build target (in
case of device builds), brand name (google vs. Android), etc., are accountable and self explana-
tory.

However, in both the device and GSI builds we observed several additional properties, c.f. sec-
tion 4.4.2 for details.

4.3.4 Google-AOSP Variations in system.img (Device Build Only)

Similar to how product.img contains apps from the OEM, Google specific applications (as replace-
ment for AOSP parts) can be found in system.img as well. We were able to infer the following
variations:

• The following apps were found under /system/app:

– CaptivePortalLogin.apk - GoogleCaptivePortalLogin.apk,

– ExtShared.apk - GoogleExtShared.apk,

– PrintRecommendationService.apk - GooglePrintRecommendationService.apk.

• Furthermore this applies to the following priviledged apps, located under /system/priv-app:

– DocumentsUI.apk - GoogleDocumentsUIPrebuilt.apk,

6We identified /prop.default in the ramdisk within boot.img, /system/build.prop in system.img, /build.prop
and /odm/etc/build.prop in vendor.img

20

– ExtServices.apk - GoogleExtServicesPrebuilt.apk,

– NetworkPermissionConfig.apk - GoogleNetworkPermissionConfig.apk,

– NetworkStack.apk - GoogleNetworkStack.apk,

– PackageInstaller.apk - GooglePackageInstaller.apk,

– PermissionController.apk - GooglePermissionControllerPrebuilt.apk,

– Tag.apk - TagGoogle.apk.

4.3.5 Info Messages utilized by Bootloader (Device Build Only)

The bootloader utilizes simple info messages encoded in images files, found under /res/images in
the initial ramdisk within boot.img. These do not match exactly between our builds, but the purely
visual differences are so minor that they are not noticable. Origin of this are likely floating point
rounding innacuracies during image generation.

4.3.6 License Attribution for Files

The NOTICE.xml.gz file, found under etc in various partitions lists installed files on the partition with
their associated license. Due to all the other differences covered in section 4.3 and section 4.4 there
are many files that exist exclusively in one build or the other. Thus it is logical that these differences
show up here as well.

4.4 Unaccountable Differences

4.4.1 Google APEX Files have Different Versions than AOSP Counterparts (Device
Builds Only)

The device flow features a subset of APEX files that have Google specific variations from the AOSP
base. These start with a com.google.android prefix (in contrast to simply com.android) and feature
different version numbers in apex_manifest.json. Beyond that, they appear extremely similar, each
having a direct AOSP counterpart and serving the same core functionality. In light of the different
version number it makes little sense to look into further differences, which do exist, in these APEX
files.

21

On the one hand, a core design goal of APEX files is that they can be independently upgraded
from the system partitions. This gives rise to the argument to classify this difference as account-
able. On the other hand, since newer version can be installed anyhow, one would expect that the
same version of the AOSP source code would produce APEX files with the same version number.
We verified that the APEX version number in our build is sound, i.e that 290000000 found at the
android-10.0.0_r35 tag7 matches the number in our APEX build artifact. We were not able to find a
documentation mapping AOSP git tags to APEX version numbers explicitly, but were able to iden-
tify the untagged commit8 for the com.google.android.conscrypt.apex APEX file which bumped the
version number to 291601500, exactly as found in the Google factory image.

4.4.2 Additional Entries in Property Files (Device Builds Only)

All property files in the device builds (except /odm/etc/build.prop) exhibit additional entries in our
build that have no comparable key in the builds provided by Google.

4.4.3 VIXL Library in Runtime APEX (Device Builds Only)

The VIXL library, located at /lib/libvixl.so and /lib64/libvixl.so respectively, in the Runtime APEX
(named com.android.runtime.release.apex) features differences. A notable one is an additional entry
to the symbol table, namely for exp2 from the standard C library. Note that in contrast to sec-
tion 4.4.1 these both have a com.android prefix and their version matches.

4.4.4 SoC vendor (Qualomm) related files in system.img (Device Builds Only)

There are several files that originate from Qualcomm and exist exclusively in the system.img pro-
vided by Google. These are:

• QAS_DVC_MSP/QAS_DVC_MSP.apk and QAS_DVC_MSP_VZW/QAS_DVC_MSP_VZW.apk in /system/app. Affiliation
was detemined by the NOTICE file found in these APKs.

• move_time_data.sh in /system/bin, as indicated by the license header in the shell script.

• 3 permission related files found under /system/etc/permissions, infered affiliation by filename.

• 17 pairs of .odex and .vdex files. All their names clearly point to Qualcomm, e.g. Qti,
com.qualcomm, vendor.qti filename prefixes.

7E.g.for com.android.conscrypt.apex that can be seen under https://android.googlesource.com/platform/
external/conscrypt/+/refs/tags/android-10.0.0_r35/apex/apex_manifest.json

8https://android.googlesource.com/platform/external/conscrypt/+/e33f52804036de692bfe4a4196a86fcea8a25269

22

https://android.googlesource.com/platform/external/conscrypt/+/refs/tags/android-10.0.0_r35/apex/apex_manifest.json
https://android.googlesource.com/platform/external/conscrypt/+/refs/tags/android-10.0.0_r35/apex/apex_manifest.json
https://android.googlesource.com/platform/external/conscrypt/+/e33f52804036de692bfe4a4196a86fcea8a25269

• 40 libraries located at /system/lib64 (as well as their equally numbered 32-bit counterparts
under /sytem/lib). All start with a com.qualcomm.qti. or vendor. prefix.

4.4.5 vendor.img uses Inconsistent Build Target Variant (Device Build only)

The vendor partition is built with a userdebug target variant9, instead of the user variant specified dur-
ing lunch invocation. This might be the origin of the differences enumerated in section 4.4.4 and for
this reason we don’t expand on the numerous differences found in vendor.img in general.

4.4.6 ELF Debug Info Differences (GSI Builds Only)

The majority of GSI differences are ELF binaries (executables and shared libraries; some
with .oat and .odex file endings) located under /system/framework/oat, /system/framework/x86

and system/framework/x86_64 in system.img, as well as /bin, /javalib, /lib and /lib64 in the
com.android.art.debug APEX. These files only differ in terms of debug data, that includes the
NT_GNU_BUILD_ID in all cases. Additionaly /lib64/libart.so in the com.android.art.debug APEX has
more expansive differences. Notably, com.android.art.debug is the only APEX (of the 18 in the GSI
build) exhibiting differences.

All .oat files, as well as the /system/framework/oat/x86_64/services.odex, feature minor differences in
their accompanying .art files at their beginning.

4.4.7 Miscellaneous Differences (Device Builds Only)

Even after considering all of the previously explained accountable and unaccountable differences,
we are still left with more. These are unfortunately quite numerous and varied in nature. Instances
that don’t warrant their own subsection, but are still noteworthy, include:

• An extra ELF binary (smcinvoked) that only exists in the Google build, located under /system/bin
in system.img

• /system/lib64 (and /system/lib respectively) in system.img feature 6 libraries that have no coun-
terpart. Googles build ships with libqcbor_system.so, libseccam.so and libsns_fastRPC_util.so,
while our build contains libDiagService.so, libframesequence.so and libgiftranscode.so

9As seen in the ro.vendor.build.type property in the build.prop property file found in vendor.img

23

Table 4.2: Lines of difference for android-10.0.0_r35 and build id 6692013. Note that the APEX entries in
this table only cover their apex_payload.img content and we ommited the com.android prefix for
brevity.

(a) Device flow

File Name ADD DEL
android-info.txt 0 6
boot.img 35529 35463
dtbo.img 5 5
system_other.img 111 218
system.img 86854 110073
vbmeta.img 206 206
vendor.img 937116 756949
tzdata.apex 28714 28681
media.swcodec.apex 1289 1327
conscrypt.apex 147 147
resolv.apex 62 64
apex.cts.shim.apex 0 0
runtime.release.apex 77 77
media.apex 481 498
All 1090591 933714

(b) Generic flow

File Name ADD DEL
android-info.txt 0 0
system.img 640943 641031
ipsec.apex 0 0
vndk.v28.apex 0 0
art.debug.apex 74 74
runtime.apex 0 0
cronet.apex 0 0
tzdata.apex 0 0
media.swcodec.apex 0 0
i18n.apex 0 0
conscrypt.apex 0 0
neuralnetworks.apex 0 0
vndk.current.apex 0 0
vndk.v29.apex 0 0
adbd.apex 0 0
resolv.apex 0 0
sdkext.apex 0 0
apex.cts.shim.apex 0 0
tethering.apex 0 0
media.apex 0 0
All 641017 641105

4.5 Quantitative Analysis

A quantitative analysis is done by summing up the number of line differences for each artifact,
as well an overall sum. This can be seen for our running examples in table 4.2. Note that our
diffstat invocation reports a third data point, representing “modified” lines for each change. The
diffoscope tool generates unified diffs, a format that has no inherent notion of changed lines, only
addition and deletion. Since diffstat makes no attempt at determinig which pairs of deletion/ad-
dition represent a modification10 and thus reports 0 “modified” lines for all unified diff blocks, we
omit this value.

Initially these numbers might seem alarmingly high, but after some review we determined that
the vast majority are due to minor differences, which are either “effectless” or chain reactions from
something trivial. As such we classify:

• vendor.img and APEX files from the device flow with a version mismatch are left out entirely,
see section 4.4.1 and section 4.4.5 why this is sensible.

10As far as the author is aware, such a process is not trivial and inherently heuristic based.

24

Table 4.3: Lines of major difference for android-10.0.0_r35 and build id 6692013. Variation of table 4.2

(a) Device flow

File Name ADD DEL
android-info.txt 0 6
boot.img 153 87
dtbo.img 5 5
system_other.img 111 218
system.img 883 1213
vbmeta.img 206 206
runtime.release.apex 77 77
All 1435 1812

(b) Generic flow

File Name ADD DEL
android-info.txt 0 0
system.img 190 231
art.debug.apex 74 74
Other 17 APEX files 0 0
All 264 305

• Visual differences in the bootloader info messages (section 4.3.5) have no effect on function-
ality at all.

• NOTICE.xml.gz is only a chain reaction from the file list differences11.

While these differences are valuable in the HTML and individual CSV reports, they obscure the big
picture view of this summary. As a consequence we created a “major” variation of this summary,
which excludes the aforementioned minor differences, as seen in table 4.3.

4.6 Diff Changes over Time

The quantitative analysis of five different builds acts as basis for answering RQ-R-COT, these are:

• AOSP tags android-10.0.0_r30 through android-10.0.0_r40 for device builds. These cover the
security patch levels from March through July 2020, one for each month.

• The oldest inspected generic build, 6692013, was performed by Google on July 19th, 2020.
Whereas the newest build 6729552 was done on August 2nd, 2020.

Over the five month span that these tags represent we can hardly see any change (fig. 4.1), save
for a minor reduction for the two latest builds. Figure 4.2 shows some variation for the GSI builds.
Considering the short timeframe of the examined builds, inference of an overall trend does not
seem wise and is likely the reason for the non-monotonic curves.

11For system.img this is especially drastic, accounting for 98.9% of line differences in the artifact for the device build.

25

Figure 4.1: Lines of major difference for a range of device builds

Figure 4.2: Lines of major difference for a range of generic builds

26

5 Conclusions and Outlook

Overall AOSP can not get built in a reproducible manner (RQ-R). Only some minor artifacts (sec-
tion 4.2) satisfy the hard requirement for bit identical results. Unfortunately we cannot declare
AOSP as an accountable build either (RQ-R-D). While we were able to find explanations for the
majority of differences (accountable differences, see section 4.3), some eluded our understanding
(unaccountable differences, as listed in section 4.4). It is quite clear that device builds exhibit more
differences than generic ones (RQ-R-CBT). This is reflected both in our qualitative and quantitative
analysis. Only section 4.4.6 covers GSI exclusive differences and in combination with a few other
subsections accounts for nearly all of them, whereas there are seven device specific subsections.
This is underlined by the quantitative analysis (1435 vs. 264 major lines added; 1812 vs. 305 major
lines removed) for device and generic build flows. Finally the number of major line differences
over time is inconclusive overall (RQ-R-COT).

The answer to RQ-BT can be found over the entire Chapter 3 and can be declared a success over-
all. With SOAP we succeeded in the creation of simple tooling, that given a few basic parameters,
generates not just Android build artifacts, but also performs a thorough comparision with official
Google build artifacts. However, we also noted that the current implementation has deficien-
cies. For example, our scripts can not handle cocurrent access to the local AOSP source code copy
(even in case of the Docker container). The manual extraction and analysis of apex_payload.img is a
workaround in search of a better solution. These and others are starting points for future work on
SOAP.

27

Bibliography

[1] A Brief Introduction to Authenticode. Microsoft. 2020. URL: https://docs.microsoft.com/en-
us/windows/win32/seccrypto/time- stamping- authenticode- signatures#a- brief-

introduction-to-authenticode (visited on 07/04/2020).

[2] Android CI Dashboard by Google. Google. 2020. URL: https://ci.android.com (visited on
03/13/2020).

[3] Android Open Source Project - Android Developer Codelab. Android Open Source Project. 2020.
URL: https://source.android.com/setup/start (visited on 04/28/2020).

[4] Android Pony Express (APEX) file format. Android Open Source Project. 2020. URL: https:
//source.android.com/devices/tech/ota/apex (visited on 07/11/2020).

[5] Android Sparse Image format. Android Open Source Project. 2020. URL: https://source.
android.com/devices/bootloader/partitions-images#sparse-image-format (visited on
07/11/2020).

[6] Best practices for writing Dockerfiles. Docker Inc. 2020. URL: https://docs.docker.com/
develop/develop-images/dockerfile_best-practices/ (visited on 07/14/2020).

[7] capabilities(7) Linux User’s Manual. https://www.mankier.com/7/capabilities. Feb. 2018.

[8] Debian Repository Format. Debian Project. 2020. URL: https://wiki.debian.org/DebianRepo
sitory/Format#Size.2C_MD5sum.2C_SHA1.2C_SHA256.2C_SHA512 (visited on 07/05/2020).

[9] Debian Wiki: Identified problems, and possible solutions. Debian Project. 2020. URL: https://
wiki.debian.org/ReproducibleBuilds/Howto#Identified_problems.2C_and_possible_

solutions (visited on 04/24/2020).

[10] diffoscope - In-depth comparison of files, archives, and directories. Reproducible Builds project.
2020. URL: https://diffoscope.org/ (visited on 07/04/2020).

[11] Docker Issue: created loop devices do not appear in container even when run privileged. Avi Deitcher,
Justin Cormack. 2020. URL: https://github.com/moby/moby/issues/27886 (visited on
07/14/2020).

[12] Factory images for Google phones (Pixel, Nexus). Google. 2020. URL: https://developers.
google.com/android/images (visited on 03/13/2020).

28

https://docs.microsoft.com/en-us/windows/win32/seccrypto/time-stamping-authenticode-signatures#a-brief-introduction-to-authenticode
https://docs.microsoft.com/en-us/windows/win32/seccrypto/time-stamping-authenticode-signatures#a-brief-introduction-to-authenticode
https://docs.microsoft.com/en-us/windows/win32/seccrypto/time-stamping-authenticode-signatures#a-brief-introduction-to-authenticode
https://ci.android.com
https://source.android.com/setup/start
https://source.android.com/devices/tech/ota/apex
https://source.android.com/devices/tech/ota/apex
https://source.android.com/devices/bootloader/partitions-images#sparse-image-format
https://source.android.com/devices/bootloader/partitions-images#sparse-image-format
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://www.mankier.com/7/capabilities
https://wiki.debian.org/DebianRepository/Format#Size.2C_MD5sum.2C_SHA1.2C_SHA256.2C_SHA512
https://wiki.debian.org/DebianRepository/Format#Size.2C_MD5sum.2C_SHA1.2C_SHA256.2C_SHA512
https://wiki.debian.org/ReproducibleBuilds/Howto#Identified_problems.2C_and_possible_solutions
https://wiki.debian.org/ReproducibleBuilds/Howto#Identified_problems.2C_and_possible_solutions
https://wiki.debian.org/ReproducibleBuilds/Howto#Identified_problems.2C_and_possible_solutions
https://diffoscope.org/
https://github.com/moby/moby/issues/27886
https://developers.google.com/android/images
https://developers.google.com/android/images

[13] ITU-T. ASN. 1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). Recommendation X.690. Geneva: Inter-
national Telecommunication Union, Aug. 2015. URL: https://www.itu.int/rec/T-REC-
X.690-201508-I/en.

[14] Saif Al-Kuwari, James H. Davenport, and Russell J. Bradford. Cryptographic Hash Functions:
Recent Design Trends and Security Notions. Cryptology ePrint Archive, Report 2011/565. http
s://eprint.iacr.org/2011/565. 2011.

[15] LineageOS Android Distribution - Usage Statistics. The LineageOS Project. 2020. URL: https:
//stats.lineageos.org/ (visited on 04/20/2020).

[16] Mobile Operating System Market Share Worldwide. Statcounter. 2020. URL: https://gs.statco
unter.com/os-market-share/mobile/worldwide (visited on 04/25/2020).

[17] Mobile operating systems’ market share worldwide from January 2012 to December 2019. Statista,
Inc. 2020. URL: https://www.statista.com/statistics/272698/global-market-share-
held-by-mobile-operating-systems-since-2009/ (visited on 04/25/2020).

[18] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser, Is-
mail Khoffi, Justin Cappos, and Bryan Ford. “CHAINIAC: Proactive Software-Update Trans-
parency via Collectively Signed Skipchains and Verified Builds”. In: 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug. 2017, pp. 1271–
1287. URL: https://www.usenix.org/conference/usenixsecurity17/technical-session
s/presentation/nikitin.

[19] PE Executable Format. Microsoft. 2020. URL: https://docs.microsoft.com/en-us/windows/
win32/debug/pe-format (visited on 06/01/2020).

[20] Reproducible Builds. Reproducible Builds project. 2020. URL: https://reproducible-builds.
org/ (visited on 04/24/2020).

[21] Reproducible Builds - BUILD_PATH_PREFIX_MAP. Reproducible Builds project. 2020. URL: ht
tps://wiki.debian.org/ReproducibleBuilds/BuildPathProposal (visited on 06/01/2020).

[22] Reproducible Builds - Introduction. Reproducible Builds project, Debian. 2020. URL: https :
//wiki.debian.org/ReproducibleBuilds/Howto#Introduction (visited on 07/05/2020).

[23] Reproducible Builds - Recommendations for timestamps. Reproducible Builds project, Debian.
2020. URL: https://wiki.debian.org/ReproducibleBuilds/Howto#Files_in_data.tar_
contain_timestamps (visited on 06/01/2020).

[24] Reproducible Builds - RPATH tags in ELF binaries. Reproducible Builds project, Debian. 2020.
URL: https://wiki.debian.org/ReproducibleBuilds/Howto#RPATH_tags_differ (visited
on 06/01/2020).

[25] Reproducible Builds - SOURCE_DATE_EPOCH. Reproducible Builds project. 2020. URL: http
s://reproducible-builds.org/docs/source-date-epoch/ (visited on 06/01/2020).

29

https://www.itu.int/rec/T-REC-X.690-201508-I/en
https://www.itu.int/rec/T-REC-X.690-201508-I/en
https://eprint.iacr.org/2011/565
https://eprint.iacr.org/2011/565
https://stats.lineageos.org/
https://stats.lineageos.org/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://reproducible-builds.org/
https://reproducible-builds.org/
https://wiki.debian.org/ReproducibleBuilds/BuildPathProposal
https://wiki.debian.org/ReproducibleBuilds/BuildPathProposal
https://wiki.debian.org/ReproducibleBuilds/Howto#Introduction
https://wiki.debian.org/ReproducibleBuilds/Howto#Introduction
https://wiki.debian.org/ReproducibleBuilds/Howto#Files_in_data.tar_contain_timestamps
https://wiki.debian.org/ReproducibleBuilds/Howto#Files_in_data.tar_contain_timestamps
https://wiki.debian.org/ReproducibleBuilds/Howto#RPATH_tags_differ
https://reproducible-builds.org/docs/source-date-epoch/
https://reproducible-builds.org/docs/source-date-epoch/

[26] Sign your app. Android Open Source Project. 2020. URL: https://developer.android.com/
studio/publish/app-signing (visited on 07/04/2020).

[27] The state of Enterprise Open Source Report. RedHat. 2020. URL: https://www.redhat.com/en/
enterprise-open-source-report/2020 (visited on 04/20/2020).

[28] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza Curtmola, and
Justin Cappos. “in-toto: Providing farm-to-table guarantees for bits and bytes”. In: 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 1393–1410. URL: https://www.usenix.org/conference/usenixsecurity19/presentat
ion/torres-arias.

[29] Elaine J Weyuker. “Evaluating software complexity measures”. In: IEEE Transactions on Soft-
ware Engineering 14.9 (1988), pp. 1357–1365.

[30] Zip Standard, version 6.3.7. PKWARE Inc. 2020. URL: https://pkware.cachefly.net/webdoc
s/casestudies/APPNOTE.TXT (visited on 06/01/2020).

[31] Horst Zuse. Software complexity: measures and methods. First. Vol. 4. Walter de Gruyter GmbH
& Co KG, 1991.

30

https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://www.redhat.com/en/enterprise-open-source-report/2020
https://www.redhat.com/en/enterprise-open-source-report/2020
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Project Goals
	1.4 Outline of the Bachelor Thesis

	2 Reproducible Builds in General
	2.1 Build Target
	2.2 Common Problems and their Solutions
	2.2.1 Timestamps and Similar Metadata
	2.2.2 Build Path
	2.2.3 Code Signing

	3 Implementation of Simple Opinionated AOSP Builds by an External Party (SOAP)
	3.1 Architecture and Tool Choices
	3.2 Usage Example
	3.3 Challenges and their Solutions
	3.3.1 Sparse Images
	3.3.2 ext4 Images with shared_blocks Deduplication
	3.3.3 Part of APEX Files Requires Special Treatment
	3.3.4 Dynamic Partitions
	3.3.5 Image Mounting in Docker Container Requires FUSE

	3.4 Known Deficiencies of Current Approach

	4 Interpretation of Uncovered Differences
	4.1 Output Format
	4.2 Reproducible Artifacts
	4.3 Accountable Differences
	4.3.1 Filesystem Timestamp Metadata in Several Partitions
	4.3.2 App Signing of Embedded APK/APEX Files, OTA Certificates and SELinux
	4.3.3 Various Metadata in Property Files
	4.3.4 Google-AOSP Variations in |system.img| (Device Build Only)
	4.3.5 Info Messages utilized by Bootloader (Device Build Only)
	4.3.6 License Attribution for Files

	4.4 Unaccountable Differences
	4.4.1 Google APEX Files have Different Versions than AOSP Counterparts (Device Builds Only)
	4.4.2 Additional Entries in Property Files (Device Builds Only)
	4.4.3 VIXL Library in Runtime APEX (Device Builds Only)
	4.4.4 SoC vendor (Qualomm) related files in |system.img| (Device Builds Only)
	4.4.5 |vendor.img| uses Inconsistent Build Target Variant (Device Build only)
	4.4.6 ELF Debug Info Differences (GSI Builds Only)
	4.4.7 Miscellaneous Differences (Device Builds Only)

	4.5 Quantitative Analysis
	4.6 Diff Changes over Time

	5 Conclusions and Outlook

