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Abstract—Tor onion services utilize the Tor network to enable
incoming connections on a device without disclosing its network
location. Decentralized systems with extended privacy require-
ments like metadata-avoiding messengers typically rely on onion
services. However, a long-lived onion service address can itself be
abused as identifying metadata. Replacing static onion services
with dynamic short-lived onion services may be a way to avoid
such metadata leakage. This work evaluates the feasibility of
short-lived dynamically generated onion services in decentralized
systems. We show, based on a detailed timing analysis of the
onion service deployment process, that dynamic onion services
are already feasible for peer-to-peer communication in certain
scenarios.

I. INTRODUCTION

Onion services allow devices to accept incoming TCP con-
nections without disclosing their network location. They are
typically used to host services with high privacy requirements
like dropboxes for whistleblowers [1], platforms to organize
against oppressive governments, or marketplaces for illegal
goods. But onion services can also provide a way to enable
temporary and anonymous communication between multiple
parties, as long as they have a way to exchange onion addresses
ahead of time. If new onion services could be created rapidly, it
would be possible to use every onion service only for a single
message. This would make it very difficult for global passive
adversaries to extract any information about communication
behavior from a user’s network traffic.

To illustrate the argument for dynamic and short-lived onion
services, consider the use of instant messaging applications:
The majority of them relies on a central server, which is
responsible for accepting and forwarding messages between
clients. This constitutes a privacy issue because the entire
communication pattern of users can be observed at one point
(the central server). Decentralizing instant messaging solves
that problem, but also introduces a new privacy issue, because
direct network connections between communication partners
can now be tracked by entities with access to a user’s network
traffic, including global passive adversaries. This enables sim-
ple deductions like finding out when a user sleeps, which can
be used to derive the timezone the user is currently located
in. But it can also be used to derive social graphs that show
which individuals are in contact with each other, which allows
identifying a user as a good friend of an already known user.

An idea to avoid this issue was to transfer messages via the
Tor network instead of sending them directly. Several projects

like Tor Messenger [2] or Ricochet [3] tried to establish
instant messaging with metadata-protection but did not manage
to capture significant public attention. Other projects like
Briar [4] or cwtch [5] which follow the same approach are
still actively developed. A renewed effort made by government
officials to force organizations to grant law enforcement access
to end-to-end encrypted information [6] has strengthened the
argument for decentralized communication, because there is
no operator of a central server, who could be forced by law
to compromise the confidentiality and privacy of all clients.
Especially users with increased privacy requirements against
public entities like journalists, activists, or whistleblowers have
a strong and justified interest in distributed metadata-protecting
messaging solutions.

A rarely discussed limitation of such metadata-preserving
messengers is the fact that Tor onion services only provide
anonymity on a network level, by hiding the IP addresses
of both communication partners. Clients still have a unique
identifier (usually an onion address), which they must share
with all their communication partners. This is an issue because
Owen and Savage [7] have demonstrated that the hidden
service directory leaks information on when and how often
onion services are accessed. In their conclusion, they go so far
as to claim that “it is straight forward to collect and monitor
Tor HSs without detection”. For users of metadata-protecting
messengers this means that the hidden service directory leaks
when and how often they receive messages.

A potential solution on a client level could maintain a
separate onion service for every contact and rotate it whenever
messages are exchanged. This could be achieved by including
an onion address in every sent message to inform the receiving
client how it can reach the sender in the future, very much like
the double ratcheting protocol updates message encryption and
integrity keys with every exchange [8].

To find out if onion services can be used in such a way in
the current Tor network, we conducted a detailed analysis on
the performance of the onion service deployment process. In
this work, we only investigate feasibility from the perspective
of clients. If and to which extent the Tor network would be
able to support dynamic onion services is the topic of ongoing
research.
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II. TOR PROTOCOL

Tor is an onion routing technology that anonymizes network
traffic by tunneling it through several nodes. A connection
established via the Tor network is referred to as a circuit and
usually consists of three nodes. The guard node (also called
entry node), a middle node, and an exit node. Multiple layers of
encryption enforce that only the guard node knows the origin
of the traffic and only the exit node knows the destination [9].

The overwhelming amount of Tor traffic is used to connect
to public websites. Access to Tor onion services makes up only
∼1.5% of the total traffic going through the Tor network [10].
Tor keeps track of all nodes currently existing within the Tor
network in a consensus. This consensus is created every hour
by a group of highly trusted relays, called the directory au-
thorities. Important for onion services is the fact that every 24
hours a new shared random value is generated and published
by the directory authorities. Unless otherwise specified, time
periods mentioned in this paper refer to the 24 hours a shared
random value is valid and when values are derived from time
periods, they are derived using the shared random value of the
time period.

Onion services were initially created as an example for
systems built on top of the Tor network [11] and enabled
users to provide services without disclosing their IP addresses
or even having a public IP address. It found reasonable
acceptance within the Tor community and several projects
(for example SecureDrop [1] and Ricochet [3]) were built on
top of it. Over time, several critical issues with the previous
version (V2) of the onion service protocol were identified,
like the use of 1024-bit RSA and SHA1 which are no longer
considered secure. Those ultimately lead to the publication of
version 3 (V3) of the onion service protocol. Unless otherwise
specified all following descriptions refer to V3 onion services.

Onion services enable the operation of globally accessible
anonymous services. While the details of the onion service
specifications [12], [13] are quite complicated, the basic con-
cept is relatively easy: Servers select introduction nodes, which
can be used to contact them. They publish these introduction
nodes within the Tor network, so other clients can find them.
Clients can then request a connection with the onion service
at a rendezvous point of their choice via an introduction
point. Establishing the connection via such a rendezvous point
provides anonymity to both the client and the server.

A. Creation of Onion Services

Every onion service is identified by a master keypair.
• The private master key grants full control over an onion

service. This key is only used to derive blinded signing
keys. Onion services use a new blinded signing key for
each 24 hour time period. The fact that these keys can
be precomputed allows offline storage of the master key,
as it is only occasionally needed to precompute another
batch of blinded signing keys.

• The public master key is encoded within the address of
the onion service. Along with an optional secret, which

can be used to protect an onion service with a password,
it forms the onion service credential that clients need to
know in order to connect to an onion service.

In order to create a new onion service, the host has to first pick
three introduction points. Any nodes within the Tor network
can be picked for this purpose, by default they are chosen at
random. To hide the network location of the onion service, the
host establishes connections to all introduction nodes via Tor
circuits and keeps them open as long as the service persists.

In the next step, a service descriptor is created to inform
clients about the introduction points of a service. Every de-
scriptor is identified by a blinded public key, which is derived
from the hidden service credential and the shared random
value of the current time period. Most of the descriptor is
encrypted, only information needed to store and distribute
the descriptor, like version and lifetime is transferred in
plaintext. All other fields, like the list of introduction points,
are encrypted with another key derived from the hidden service
credential and the current time period. If client authentication
is enabled, a second layer of encryption is introduced to ensure
that only selected clients can read the descriptor.

Once the descriptor has been correctly generated, it must
be made available to potential clients. This is done via a
distributed hash table (DHT) split across a subset of Tor
nodes referred to as the hidden service directory (HSDir). The
location of the descriptor within the DHT is determined by
hashing the blinded public key, along with the current time
period and the replica number. Replicas are used to distribute
descriptors randomly across the HSDir. Additionally, a spread
is defined to upload a descriptor not only to the single node
determined by the location, but also to the closest nodes within
the hash table. So, if one node fails, the descriptor remains
reachable. By default, onion services use two replicas and
spread the descriptor over four nodes, resulting in 8 descriptor
uploads for every onion service.

B. Access to Onion Services

To connect to an onion service, a client must first know the
onion address, which contains the public part of the master
keypair. With that information (and an optional secret) the
hidden service credential can be derived. That enables the
client to calculate the identifier of the service descriptor it
is looking for, by blinding the credential with the current
shared random value. Hashing the blinded key along with the
time period and replica number tells the client the location of
the descriptor within the HSDir. By default, clients randomly
contact one of the three HSDir nodes closest to the calculated
location.

Any request to the HSDir must be made via Tor to en-
sure that clients remain anonymous to the operators of the
Tor relays hosting the hidden service directory. Once clients
receive the desired descriptor, they can decrypt it by deriving
the decryption key using the credential and the current time
period.

The client then picks a random node within the Tor network
as a rendezvous point and establishes a circuit to this node.
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Afterwards, it connects to one of the introduction points stated
in the descriptor and asks the onion service to meet at the
chosen rendezvous point. The introduction point can forward
the request through the still open circuit maintained by the host
responsible for the onion service. Upon receiving the request,
the onion service creates a circuit to the rendezvous point and
has its circuit connected directly to the circuit of the client.
At this point, a circuit across six relays connects the client to
the onion service.

III. PROVISIONING TIME ANALYSIS

To find out if there are scenarios where it is feasible to
constantly generate new onion services, we need to quantify
the associated negative performance impact. To do this we
measure the time between instructing a host to generate an
onion service and clients being able to access it. Only if this
latency is sufficiently low, it may be acceptable to generate
onion services on-demand, which opens up interesting fields
of application for onion services.

Our measurement setup is inspired by previous work of
Loesing et al. [14] and Lenhard et al. [15], but instead of
measuring the time it takes to access an onion service, we
measure the time it takes to create one.

A. Measurement Setup

We use the Tor Stem1 library to generate onion services.
Timing information is extracted from the log file created by
Tor and event listeners attached via the Stem library. This
allows measuring the time of the following events:

• Start connecting to introduction point,
• circuit to introduction point established,
• introduction point ready,
• service descriptor created,
• start upload to HSDir, and
• finish upload to HSDir.

No good solution was found to measure the time it takes Tor to
select introduction nodes when creating a new onion service.
It seems reasonable to assume that this time is insignificant
for the overall latency, but it could be speculated that one host
running many onion services could experience deteriorating
performance as Tor does not reuse introduction points2.

All our tests were conducted with version 0.4.3.5 of Tor and
ran on a virtual machine running Debian 10, which was moni-
tored to ensure that no local limitations regarding CPU, band-
width, latency or memory would impact our measurements.
The Internet connection (1GBit/s, low latency) was constantly
monitored to be working within “normal” parameters, in order
to assure that we do not accidentally measure latency effects
or outages introduced primarily through our own Internet link.

To ensure that measurements do not influence each other,
a new Tor process is completely bootstrapped within a fresh
Docker container for every onion service. Our test system runs

1https://stem.torproject.org/
2The official documentation still has an open TODO on picking nodes.

However, a review of the Tor implementation revealed that this is the case.

one test at a time to avoid different onion services impacting
each other. To mitigate the effects of possible issues with our
Internet connection or the Tor network, tests are conducted in
a loop. Every iteration of the loop tests every configuration
once. This loop ran more than 1500 times over a period of 10
days to obtain a sufficiently large sample size.

The Docker container specification with our measurement
implementation is available at https://github.com/mobilesec/
onion-service-time-measurement to enable other researchers
to reproduce our measurements.

B. Measured Configurations

As already mentioned, onion services are still in develop-
ment and can, therefore, currently be deployed in different
configurations. To find out if the method of deployment has
an impact on the provisioning time of onion services, four
different types were measured:

1) V2: A V2 onion service with default parameters: Old,
no longer recommended version, which was mainly
included to enable comparisons with previous research.

2) V3: A persistent V3 onion service with default param-
eters.

3) Ephemeral: A V3 onion service with default parameters
which can only be created via the control protocol and
will only exist as long as the control connection to the
Tor instance is maintained.

4) Vanguard: A V3 onion service with the Vanguard [16]
extension to harden it against different deanonymization
attacks.

C. Results

Fig. 1 provides a good summary of the results of our
analysis. The changes implemented by V3 of the onion service
protocol have significantly improved deployment times from
about half a minute to less than 10 seconds. There are no
significant differences between normal and ephemeral onion
services, which is no surprise considering that the only differ-
ence between those is the persistence of cryptographic keys
on disk. The Vanguard extension also shows no significant
changes in provisioning time, which is unexpected because
modifying Tor’s behavior via the control protocol should
actually cause a performance overhead, but is apparently not
relevant for our measured scenario.

1) Provisioning Stages: A potentially interesting expla-
nation for the significant differences in provisioning times
between V2 and V3 is provided by Fig. 2. It splits the
provisioning into three stages:

1) The time it takes the host to establish the introduction
points for the onion service,

2) the time it takes to generate a descriptor for uploading
after introduction nodes have been established, and

3) the time it takes to actually upload the descriptor.
The first fact to note here is that V2 onion services appear to
take much longer to generate their service descriptors. Since
there was no obvious reason for such a significant performance
difference, we investigated the source code and found that
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Fig. 1. Overview of provisioning times

Fig. 2. Composition of provisioning times

the current implementation of Tor V2 onion services waits 30
seconds before uploading a descriptor. There is no explanation
in the specification [12] as to why this delay is necessary and
the source code only comments that the delay is introduced to
ensure that the descriptor is stable. Since V2 onion services
are going to be disabled in October 2021 [17], we did not
spend additional time on analyzing this issue.

Fig. 2 also reveals other less obvious, but interesting,
aspects. For example, it confirms a suspicion that is hard to
verify on the logarithmic scale of Fig. 1, namely the fact that
for V2 onion services, upload times have not only less impact
on the total provisioning time, but are also lower in absolute
numbers. The exact reasons for this behavior is analyzed in
section III-C2.

Another interesting observation is the fact that establishing
introduction nodes is insignificant to the provisioning time of
an onion service across all configurations. This observation
is however not fully correct because as already mentioned all

our measurements were conducted with fully bootstrapped Tor
instances. During the bootstrapping process, several circuits
(in our experiments we encountered between 2 and 15 circuits
during bootstrapping) are prepared, so they can be used for
later connections. In our setup, these circuits are always used
to connect to introduction points, so our measured time for
the creation of introduction points does not include the circuit
creation time. Since Tor already collects detailed metrics on
circuit creation time [10], there was no reason to analyze them
ourselves.

What is worth noting, is that the Vanguard plugin almost
doubles the introduction node building time, without impacting
the overall provisioning time. At first glance, this seems to
imply that Vanguard is actually decreasing the descriptor
creation time, which is unlikely considering the fact that
Vanguard makes no changes to service descriptors. Instead,
the difference is caused by the fact that the generation and
derivation of all keys required for creating a service descriptor
take a constant amount of time and can already start before
the introduction points have been selected. We verified this
by deploying onion services with 10 introduction points.
Naturally, they needed more time to establish their introduction
points, but they still finished creating their descriptors at the
same time as services with only three introduction points. This
shows that the time needed to establish introduction points
is currently irrelevant for the provisioning time of an onion
service.

Our final observation is that the descriptor upload is the
most significant factor for total provisioning time in current
onion service configurations, so we look at them in more
detail.

2) Descriptor Upload Times: Our results for descriptor
upload times have to be put in context to be understood further:
Every onion service uploads its descriptor to several nodes on
the hidden service directory. The number can be configured by
each service, but the defaults are three nodes for V2 descriptors
and four nodes for V3. Both are uploaded in two replicas, so
in total there are 6 and 8 uploads. Additionally, the V3 onion
service specification requires them to always be valid in two
time periods, the previous one and the current one. So when
creating a new V3 service from scratch (as done by our test
setup) 16 descriptors are uploaded initially.

When Tor clients try to access an onion service, they use
their current time period. The previous one is only uploaded
to avoid synchronization issues with clients that are still in
the previous time period. Tor clients randomly pick one out
of only three nodes from one of the two replicas. The fourth
upload in V3 is only there to handle situations where a HSDir
node goes offline. This means that a single upload could be
sufficient to allow an incoming connection. Unless there are
any issues with synchronization or failing nodes, six uploads
already enable full connectivity. Our measurement setup was
not designed to take this into account. Instead, we assume that
a descriptor has been successfully published when half of all
uploads (3 for V2 and 8 for V3) have been completed. The
upload time in Fig. 2 shows how long it took on average to
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Fig. 3. Time it took individual uploads to complete

Fig. 4. Time to upload descriptor via established circuit

complete half of all uploads. This decision removes the impact
of very slow uploads and tries to find a middle ground between
trying to find the earliest time when connections are possible
and the time when connections are almost certain to succeed
without retries.

Fig. 3 shows the duration of individual descriptor uploads.
The majority of upload requests finish in less than 5 seconds
and almost all uploads complete after 20 seconds. A note-
worthy result of our measurement is an unexpectedly high
number of upload requests that take between 100 and 105
seconds, which occurs for all measured configurations, but
happens less often for onion services with the Vanguards
extension. To further analyze this behavior we conducted a
second smaller experiment by running the loop only 500 times
and additionally tracking the time when upload circuits were
completed. This allows us to split the upload time into the
time it took to create a circuit and the time it took to actually
upload the descriptor.

Fig. 5. Time to create upload circuit

Fig. 4 shows that plain uploads hardly ever exceed five
seconds and even the slowest single upload we measured only
took 12 seconds to complete. The unexplained 100 second
delay is only present in the circuit creation time. This makes
sense because this delay only happens when Tor fails to open
a circuit to a hidden service directory. In this case a 100
second timeout occurs before another attempt is made. This
also explains why Vanguards has a positive effect on this
issue. It selects a subset of candidate nodes for the second
and third hop of a circuit and tries to reduce the risk of
picking a malicious node. Apparently, this also reduces the
risk of picking nodes, that cause circuit creation attempts to
fail, increasing the overall performance and reliability.

Another interesting result in this context is the fact that some
circuits fail again after this 100 second timeout. In this case
Tor does not wait and try for a third time, but instead abandons
the upload attempt entirely. This does not result in any error
displayed to the user, because the onion service concept is
redundant and a single failed upload has no significant impact
on the availability of an onion service. During our experiments
we experienced an upload failure rate of about 1% for upload
requests without Vanguard and a failure rate of about 0.8%
for uploads with Vanguard.

Fig. 4 confirms that V2 descriptors are published faster
than V3, which is most likely caused by the much larger
descriptor size in V3. Fig. 6 provides a zoom-in on circuit
build times below 8 seconds to facilitate comparison with Fig.
4 and shows that the circuit creation time has more impact
on how long it takes to publish a descriptor than the actual
upload. An interesting observation is that our results seem
to indicate that V2 upload circuits are created faster than
V3 upload circuits. This effect is again caused by the fact
that our Tor binaries were fully bootstrapped before any mea-
surements were conducted, which allows Tor to cannibalize
general circuits for uploads if there are any available. Since
cannibalization is much faster than creating a circuit from
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Fig. 6. Zoom-in on uploads circuit build times below 8 seconds

scratch, this means that some upload circuits can be created
faster than the rest. The lower number of uploads in the V2
onion service specification increased the relative impact of
these cannibalized circuits, creating the impression that V2
upload circuits are created faster. Unfortunately, we could not
properly quantify the impact of this issue, so we cannot say if
there are any other factors contributing to the increased circuit
creation time in V3.

IV. CONCLUSION

While improved performance was not an explicit objective
of the V3 onion service protocol, our measurements show that
the deployment performance was improved significantly from
more than 30 to about 5 seconds. Despite these improvements,
onion service deployment still takes several seconds, which
is probably too long for applications like instant messaging
where users would experience that additional delay for every
message.

We also show that roughly 80% of the time needed for
publishing an onion service is spent on uploading descriptors
to the HSDir. However, an onion service can also be accessed
without being published, if there is some other way to share the
service descriptor with the potential communication partner.
This reduces the time it takes to prepare an onion service to
about one second and reduces the load that the creation of
dynamic onion services puts on the Tor network. In an instant
messaging scenario, an initial exchange of service descriptors
could take place when two individuals are in close proximity
by encoding a service descriptor in a QRcode and displaying
it for the communication partner to scan. Afterwards, clients
could append the next service descriptor to sent messages,
thus iterating the used onion service with every exchanged
message. This would increase the time it takes to send a
message, because a new service descriptor has to be created
every time, but an additional delay of a single second might
be acceptable for many scenarios. User experience could be
further improved by already setting up a new onion service

while the user is still typing. Avoiding the hidden service
directory has the additional benefit of removing one possible
attack vector against communication via onion services.

In conclusion, applications intending to use short-lived
dynamic onion services should either be able to tolerate
noticeably increased latency or try to find an alternative way
of exchanging service descriptors, until Tor further improves
the performance of circuit creation.
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