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Abstract—Most state-of-the-art face detection algorithms are
usually trained with full-face pictures, without any occlusions.
The first novel contribution of this paper is an analysis of
the accuracy of three off-the-shelf face detection algorithms
(MTCNN, Retinaface, and DLIB) on occluded faces. In order
to determine the importance of different facial parts, the face
detection accuracy is evaluated in two settings: Firstly, we
automatically modify the CFP dataset and remove different areas
of each face: We overlay a grid over each face and remove one
cell at a time. Similarly, we overlay a rectangle over the main
landmarks of a face – eye(s), nose and mouth. Furthermore,
we resemble a face mask by overlaying a rectangle starting
from the bottom of the face. Secondly, we test the performance
of the algorithms on people with real-world face masks. The
second contribution of this paper is the discovery of a previously
unknown behaviour of the widely used MTCNN face detection
algorithm – if there is a face inside another face, MTCNN does
not detect the larger face.

Index Terms—importance of eye region, influence of face
masks, MTCNN, Retinaface, DLIB, face detection performance
on real-world face masks, face-in-face malfunction

I. INTRODUCTION

Face recognition systems are widely used and are still
gaining popularity. Moreover, in various situations people
(have to) cover their faces, for example by wearing face masks
due to the current Covid-19 outbreak or medical staff wearing
protective clothing during their work. This poses the question
if and how the performance of state-of-the-art face detection
algorithms is impacted by these occlusions.

Additionally, knowing if certain facial parts influence the
accuracy of state-of-the-art face detection models more-than-
average can increase privacy because it allows individuals to
take action and specifically cover these important areas.

In this work we differentiate between three distinct tasks
related to face recognition:

1) Face detection: This type of network receives an image
as input and detects the bounding box for each face.

2) Face mask detection: These networks are similar to
face detection algorithms, with the major difference that
instead of a single class, two classes are detected: faces
wearing masks and faces not wearing them. The output
are bounding boxes for both classes.

3) Face recognition: The input is a cropped and further
pre-processed image of a single face. The goal of face
recognition algorithms is to identify people. In order to

be able to compare two yet unseen people, the output
of the network is an embedding. This embedding is a
vector of numbers and should be constructed with low
inter-class and high intra-class similarity.

The training dataset plays an important role in current face
detection and recognition tools and it largely influences its
accuracy. Face recognition tools are trained with millions of
face images (ArcFace [3] uses 5.8 million images, FaceNet [4]
200 million images). Datasets which are used to train current
state-of-the-art face recognition tools do not mention the usage
of images of people with face masks, and thus we suspect
that only a small fraction of the training images contain a
person wearing a face mask. To support this claim, we ran
an off-the-shelve face mask detection algorithm [23] (with
a threshold value of 0.95) on the VGGFace2 dataset [21], a
large dataset (3,141,890 images), which is commonly used to
train face detection and recognition networks. The face mask
detection algorithm classified only 12,671 (0.40%) images as
person with facemask. Through manual verification of these
proposals, we found 12,616 false positives. Only 34 show
people wearing a medical face mask and 21 show people with
mouth and nose covered with fabrics. Thus, only 0.0018%
(55/3,141,890) of all images in the dataset [21] depict people
with face masks.

Because of this discrepancy of models not seeing masked
faces while training and people wearing face masks in real-
world settings, this paper analyzes the performance of three
off-the-shelf face detection algorithms (MTCNN [5], Reti-
naface [6], and DLIB [7]) in this setting. MTCNN uses a three
stage pipeline to exploit the inherent correlations between
face detection and face alignment using deep convolutional
neural networks [26]. In contrast to MTCNNs multi-stage
pipeline, Retinaface is a robust single-stage face detector,
which employs only light-weight backbone networks while
still achieving state-of-the-art accuracy. In order to analyze a
completely different architecture, we included DLIBs face de-
tection algorithm, which uses histogram of oriented gradients
(HOG) to detect faces. These networks have been trained with
a negligible amount – if any – of faces with masks and are
evaluated against images where parts of the face are occluded,
e.g. by putting on a face mask. The main research question is
how different facial parts influence the accuracy of state-of-
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the-art face detection networks.
The code used for modifying the dataset and performing

the evaluation is available at https://github.com/mobilesec/
occluded-facedetection-performance.

II. RELATED WORK

As Damer et al. [8] stated, the detection of occluded faces is
a well-studied issue in the computer vision domain. Especially
since the Covid-19 outbreak, a lot of research results have
appeared in this area.

In order to increase face detection performance on occluded
faces, Zhang et al. [16] propose a hard image mining strategy.
This results in more emphasis on hard samples, which models
reality more closely. Furthermore, in an effort to detect par-
tially occluded faces, Zeng et al. [17] introduced the triplet
loss training strategy.

In order to objectively analyze current performance of face
detection algorithms on masked faces and to increase the
accuracy for future face recognition algorithms, new datasets
with masked faces have been proposed [9]. However, these
datasets are still in the early stages as they feature only a
4-digit number of faces. Thus, they are between 3 (w.r.t.
MS1M [22]) and 4 (w.r.t. FaceNet) orders of magnitude
smaller than current face detection datasets without masks.

Due to the current increase in popularity of face masks,
literature tries to improve performance despite having large
parts of the face covered [20]. This is an ongoing research
activity. Many current popular face detection algorithms are
not yet specifically trained on occluded faces. Therefore, this
paper studies the performance of these popular face detection
algorithms.

Every face recognition algorithm depends on a face detec-
tion algorithm [24]. Thus, if the face detection algorithm does
not detect a face, any face recognition algorithm is rendered
useless. A study for face recognition algorithms has been
performed by NIST, where they published an evaluation of
the performance of current state-of-the-art face recognition
algorithms [13], without being fine-tuned for masks. This is a
reasonable assumption since it holds for most of the currently
used face recognition systems. NIST also plans to perform
a similar experiment with algorithms specifically tuned to
recognize people wearing masks [25]. Similar to this, our ex-
periments evaluate the performance of popular face detection
algorithms, consequently focusing on the preprocessing stage
that images need to pass in order to even be considered for
later face recognition.

III. DATASETS

In this work we use two different datasets:

1) The Celebrities in Frontal-Profile (CFP) [12] data set,
which consists of 500 individuals with 10 frontal images
per person. The dataset also contains 4 additional profile
images per person, which will not be used in this
evaluation.

2) A real-world mask dataset [9] which has been crawled
from various data sources. This collection contains 525
different people with 2203 masked faces.

In order to check which part of the face is most important for
face detection (further discussed in Section IV), we modified
the images of the first dataset [12] by excluding certain areas.
There are two main strategies employed:

1) Overlaying a grid in various sizes over the face and
blacking out one cell at a time. To be able to clearly
see what modification has taken place, the resulting
modifications for one randomly selected person are
visualized in Fig. 1.

2) Removing landmarks of the face:
• eye(s) (Fig. 2a, 2b, and 2c),
• nose (Fig. 2e), or
• mouth (Fig. 2d).

In order to be able to objectively measure the impact of
these landmarks on the face detection accuracy, for each
of these settings we create another modification where
the same amount of area is blacked out, on a random
other part of the face (modifications ending with -not).
Since the sizes of the images and therefore the faces
vary significantly, the size of the blacked out area
is proportional to the size of the face. The specific
proportions have been empirically chosen such that the
landmark is sufficiently removed. These values are easily
retrievable in the published source code of this paper.

Manually modifying 5.000 images for all these settings is
clearly not feasible. There are two requirements for creating
these modifications:

1) Background vs. face: Even though all people are dis-
played in a portrait style where only one person is visible
and takes up the majority of the space, the exact location
of the face is not constant. For creating the modified
versions grid and grid-mask, we do not want to distort
the results by blackening out background pixels instead
of pixels belonging to the face.

2) Face landmarks: In order to be able to remove face
landmarks, we need to know their location.

MTCNN returns the keypoints for the landmarks, and is
therefore utilized in this work for automatically modifying
the datasets. The ground truth for all experiments in this
subsection are 4.978 faces, excluding 22 faces where MTCNN
could not detect a face on the unmodified dataset. We defined
the size of the rectangle through empirical experiments to
properly cover the respective landmarks. For example, for
removing the eyes, we chose the rectangles width to be 25
% and the height to be 15 % of the face width, as these
values seem to properly cover the eyes in most instances. Even
though we do not expect the specific values used in this paper
to significantly impact the results, they are easily retrievable
for every setting through the provided Github repository link.

IV. EXPERIMENTAL RESULTS

In order to verify which face regions are most important for
face detection, we will check the accuracy of three state-of-



(a) 2x2 grid (b) 3x3 grid

(c) 4x4 grid (d) 5x5 grid

Fig. 1: Proposed modifications of the CFP dataset with respect
to blacking out grid cells in various sizes.

(a) eyes (b) eyeleft (c) eyeright (d) mouth (e) nose

Fig. 2: Proposed modifications (landmarks-*) of the CFP
dataset with respect to blacking out landmarks of the face.

Fig. 3: Proposed modifications (grid-mask-{00-15}) of the
CFP dataset with respect to simulate a face mask.

TABLE I: Misclassification rates for grid-2 modification.

Area Misclassification rate
MTCNN Retinaface DLIB

Top left corner 14.1% 9.96% 20.81%
Top right corner 18% 9.94% 28.65%
Bottom left corner 3.6% 4.3% 39.94%
Bottom right corner 9.78% 6.29% 63.1%

the-art face detection algorithms on computer-modified images
and real-world images of people wearing face masks.

A. Computer modified images from the CFP dataset

We feed our dataset of modified images from the CFP
dataset into MTCNN, Retinaface, and DLIB and analyze their
accuracy.

1) Baseline: In order to be able to compare the performance
of the face detection algorithms on differently modified CFP
datasets, we first calculate the accuracy of the three analyzed
algorithms on the dataset without any modification. In this
work we are interested in correctly detecting the face. We
are not differentiating between false positives (i.e. wrongly
classifying part of the image as person) and false negatives (i.e.
not detecting a person). They both count as misclassification
and thus reduce the accuracy equally. From the 5.000 images,
between 99.2% (DLIB, 4960 / 5000 images) and 99.74%
(Retinaface, 4987 / 5000 images) of all visible humans are
successfully detected.

B. Grid

The modifications are named after the amount of both
horizontal and vertical cells.

a) Grid-2: In this setting, we blacked-out a quarter of the
face. There is an interesting difference in accuracy between
these quarters, as shown in Table I. These results suggest that
the top half of the face is more important for face detection,
as they have a higher misclassification rate. Interestingly, in
all three face detection algorithms the bottom left corner has
a significantly lower misclassification rate than the other 3
corners. This could be due to two facts:

1) The modified CFP dataset is biased and the bottom left
quarter is not as informative as the remaining ones.
Therefore the face detection algorithms (correctly) do
not emphasis this part of the image.

2) The pre-trained face detection models are biased, e.g.
by using a biased dataset for training.

In order to exclude the first possible explanation, we created
another modification of the dataset by flipping the image
vertically (grid-flip-2). If the first statement is true, we expect
the misclassification rate to flip as well. Table II shows that
this is not the case. The misclassification rate is still lowest if
the bottom left quarter is blacked-out.

b) Grid-3: For all variations except for blacking-out the
middle cell, all three algorithms perform pretty well:

1) MTCNN: 0.3% - 5.26% misclassification rate
2) Retinaface: 0.54% - 2.53% misclassification rate



TABLE II: Accuracy for the flipped image in the grid-2 setting.

MTCNN Retinaface DLIB

Correct 0 people 2 people Correct 0 people 2 people Correct 0 people 2 people
grid-flip-2/00 4303 674 2 4479 495 5 3951 1024 4
grid-flip-2/01 4139 836 4 4465 508 6 3616 1360 3
grid-flip-2/02 4758 218 3 4736 230 13 2899 2076 4
grid-flip-2/03 4571 406 2 4659 314 6 1727 3245 7

3) DLIB: 1.19% - 16.65% misclassification rate
Interestingly, the last case with a black middle cell achieves a
significantly larger misclassification rate: 41.94% (MTCNN),
12.03% (Retinaface), and 55% (DLIB). This might be an
indication that the nose might play an important role for face
detection, which we will test in Section IV-B1c in more detail.

c) Grid-4 and Grid-5: These settings further indicate the
importance of the nose, as every cell which “touches” the nose
has a significantly higher misclassification rate.

1) Area around landmarks:
a) Eye region: The eye region is critical for face recogni-

tion [14]. Thus, it might also be of special importance for face
detection. Therefore, as introduced in Section III we modified
the CFP dataset, such that features around the eye region are
removed.

MTCNN, Retinaface and DLIB achieve approximately the
same accuracy (97.2%, 99.4%, and 98.4%, respectively) if the
area around both eyes are removed.

If the eye region plays a more important role than other parts
of the face, the amount of errors (false positives and false neg-
atives) of face detection algorithms will be higher if compared
to a dataset where rectangles with the same size are inserted
on random positions (eyes-both-not). Our experiments clearly
contradict this argument, as all three algorithms detect between
1.02 (Retinaface) and 7.33 percent points (DLIB) more faces
if the rectangles are randomly located. This suggests that
other parts of the face are more important for face detection
accuracy. One possible explanation is that people in the eyes-
both dataset look like they are wearing sunglasses, which face
detection algorithms have already seen in the training phase.

Similar results are obtained if we occlude a single eye
(datasets eyes-{left—right}[-not]).

b) Mouth: If we remove the mouth, we see similar results
as with removing the eye region. Compared to the version
where the mouth is covered, the face detection algorithms
detect between 4.36 (Retinaface) and 14.81 (DLIB) percent
points more faces if the rectangles are randomly distributed
(mouth-not). Therefore, the mouth seems not to have a higher
importance for face detection algorithms.

c) Nose: If we evaluate the face detection algorithms on
images where the nose has been blacked-out, the algorithms
achieve an accuracy of only 72.94% (MTCNN), 94.23%
(Retinaface), and 58.62% (DLIB). If you remove a rectangle
of similar size, accuracy increases to 98.03%, 98.65%, and
94.76%, respectively. One (partial) reason for this large dif-
ference (especially considering MTCNN and DLIB) might be
that the nose is in the very center of the face.

Fig. 4: Misclassification results in percentage for simulated
face mask modification.

In general, with an average accuracy of 97.4% Retinaface
seems to handle occluded faces significantly better than
MTCNN (91.6%) and DLIB (87.7%).

C. Mask

In this modification we simulated a face mask in various
sizes. As expected, there is a positive correlation between the
size of the face mask and the misclassification. The results are
shown in Fig. 4.

D. Real world mask images

So far, we have only considered face occlusions which have
been generated by a computer. In this subsection we will
evaluate the performance on real world mask images. MTCNN
and Retinaface both detected around 45% of the faces, DLIB
only detected 3.4% of all faces (Table III). One possible reason
for these low accuracy rates is the challenging dataset. Some
people wear both a face mask and sunglasses, resulting in most
of the face being occluded.

V. MTCNN FACE-IN-FACE MALFUNCTION

Since many state-of-the-art face recognition tools, such as
ArcFace and SphereFace, recommend the use of MTCNN,
we evaluated its performance on the real-world masked
dataset [9]. As shown in Table III, face detection worked
for 46% (1007/2203) of the images from the real-world mask
dataset RMFD [9]. 15 randomly selected images where face
detection did not work are shown in Fig. 5. In contrast, Fig. 6



TABLE III: Results of three face detection algorithms (MTCNN, Retinaface, and DLIB) on real-world mask dataset [9].

MTCNN Retinaface DLIB
0 faces 2 faces 3 faces 0 faces 2 faces 0 faces 2 faces

RMFD [2203 images] 1196 1 1 1250 1 2129 1

Fig. 5: 15 exemplary images where MTCNN could not detect
the person.

Fig. 6: 15 exemplary images where MTCNN could detect the
person.

shows 15 randomly selected images, where the face detection
was successful.

After manually inspecting the cases where face detection
did not work, we found an interesting behaviour of MTCNN.
Fig. 7 shows a masked person wearing eyeglasses. MTCNN
detects the reflected person in both lenses, while missing the
person wearing the eyeglasses. This behaviour raises the ques-
tion if MTCNN never detects a person if it has already detected
a person in its subarea. Therefore, the following experiment
has been conducted: Two images are manually constructed,
each one featuring a person. Without any modification (left-
hand side of both Fig. 8a and Fig. 8b) the person is detected.
After inserting another image inside the (fore-)head (Fig. 8a)
and inside the cheek (Fig. 8b)), MTCNN is not able to detect
the original person anymore.

While this previously unknown behavior seems rather log-
ical, it has a severe potential for abuse: face recognition
relying on MTCNN for face detection can easily be evaded
by smart placement of the image in a face, leading to the
real face staying undiscovered and unrecognized. Furthermore,
as shown in Fig. 7, MTCNN can be fooled if sunglasses
reflect another face. This behaviour is particularly problematic

Fig. 7: MTCNN detects the reflected person in both lenses
while missing the person wearing the eyeglasses.

(a)
(b)

Fig. 8: MTCNN detects the original person (left-hand side
in a) and b)). If there is another person inserted inside the
head (right-hand side in a) and b)), the original person is not
detected anymore.

since popular tools like ArcFace and SphereFace explicitly
recommend the use of MTCNN.

VI. CONCLUSION

This paper analyzed the performance of three state-of-the-
art face detection algorithms on occluded faces. Two different
types of occlusions have been studied:

1) automatically modified versions of the CFP dataset,
removing various parts of the face, and

2) real world images of people wearing masks.
The region around the nose plays an important role for
face detection. Even though all three analyzed face detection
algorithms achieve roughly the same accuracy on a dataset
without occlusions, Retinaface outperforms both MTCNN and
DLIB on most datasets where large parts of the face are
missing.

Furthermore, this work found an interesting behaviour of the
popular face detection algorithm MTCNN: If there is a face
visible inside another face, the larger face will not be detected
by MTCNN. This can significantly impact face recognition
that relies on MTCNN for face detectio, such as state-of-the-
art algorithms ArcFace and SphereFace.
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